OVERVIEW OF FLAVOUR THEORY AT e^+e^- COLLIDERS

> JURE ZUPAN U. OF CINCINNATI

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022, May 24 2022

FLAVOR PHYSICS

- many open questions
- SM flavor puzzle
 - the origin of masses and mixing pattern

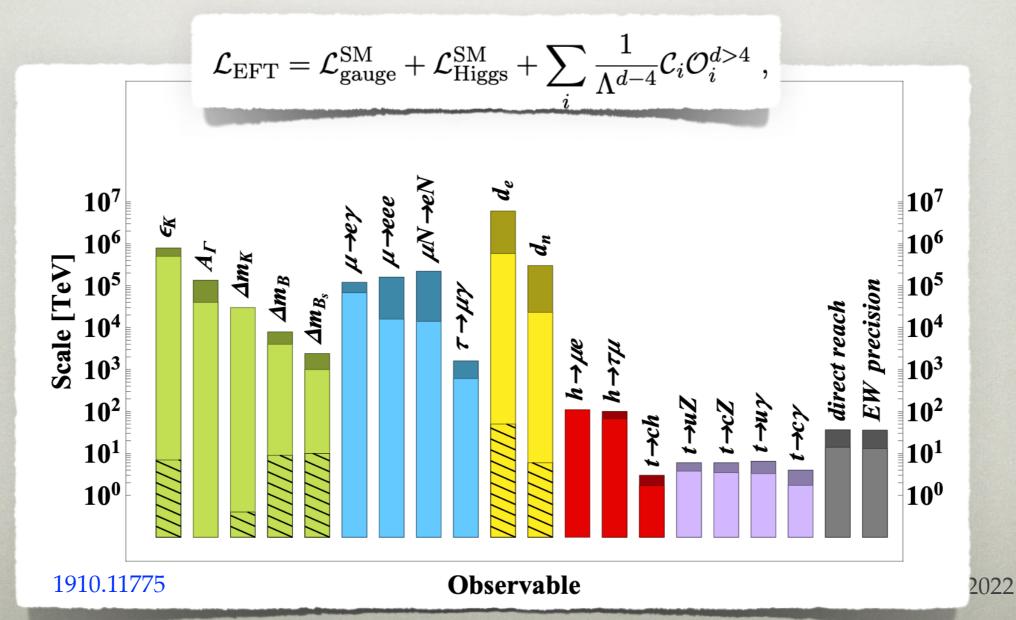
- NP flavor puzzle
 - TeV scale NP (hierarchy problem) has to have highly nontrivial flavor structure

J. Zupan Flavor theory ...

SUCCESSFUL IN THE PAST

- indirect probes of high scales
- several examples from the past

Glashow, Iliopoulos, Maiani, 1970


- suppressed $K_L \rightarrow \mu^+ \mu^- \Rightarrow$ charm quark
- $\epsilon_K \Rightarrow$ existence of 3rd gen. (*t*,*b* quarks) Kobayashi & Maskawa, 1973
- $\Delta m_K \Rightarrow m_c \sim 1.5 \, \text{GeV}$

Gaillard & Lee; Vainshtein & Khriplovich, 1974

- $\Delta m_B \Rightarrow m_t \gtrsim 100 \, \text{GeV}$
- instrumental in construction of the SM
 - will it play the same role in discovery of NP?
 - $b \rightarrow c\tau\nu, b \rightarrow s\ell\ell$ anomalies...

EXPTECTED PROGRESS

- assuming NP is heavy, can be integrated out \Rightarrow dim. 6 SMEFT ops.
- flavor probes very high scales
- large expected increases in sensitivity in many probes

BELLE II AND LHCB UPGRADES

upgrades planned at both Belle II and LHCb

Tom Browder @ Snowmass 2022 in Cincinnati

Observable	2022	2022	Belle-II	Belle-II	LHCb	Belle-II	LHCb
	Belle(II),	LHCb	5 ab^{-1}	50 ab^{-1}	$50 { m fb}^{-1}$	250 ab^{-1}	$300 {\rm ~fb^{-1}}$
	BaBar						
$\sin 2\beta/\phi_1$	0.03	0.04	0.012	0.005	0.011	0.002	0.003
γ/ϕ_3	11°	4°	4.7°	1.5°	1°	0.8°	0.35°
α/ϕ_2	4°	_	2°	0.6°	-	0.3°	_
$ V_{ub} / V_{cb} $	4.5%	6%	2%	1%	2%	< 1%	1%
$S_{CP}(B \rightarrow \eta' K_{\rm S}^0)$	0.08	_	0.03	0.015	-	0.007	-
$A_{CP}(B \rightarrow \pi^0 K_{\rm S}^0)$	0.15	_	0.07	0.04	-	0.018	-
$S_{CP}(B \to K^{*0}\gamma)$	0.32	_	0.11	0.035	-	0.015	-
$R(B \to K^* \ell^+ \ell^-)^\dagger$	0.26	0.12	0.09	0.03	0.022	0.01	0.009
$R(B \to D^* \tau \nu)$	0.018	0.026	0.009	0.0045	0.0072	< 0.003	< 0.003
$R(B \to D\tau\nu)$	0.034	_	0.016	0.008	_	< 0.003	_
$\mathcal{B}(B \to \tau \nu)$	24%	_	9%	4%	_	2%	_
$\mathcal{B}(B \to K^* \nu \bar{\nu})$	_	_	25%	9%	-	4%	-
$\mathcal{B}(\tau \to e\gamma)$ UL	42×10^{-9}	_	22×10^{-9}	$6.9 imes 10^{-9}$	—	$3.1 imes 10^{-9}$	_
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	21×10^{-9}	$46 imes 10^{-9}$	$3.6 imes 10^{-9}$	0.36×10^{-9}	$1.1 imes 10^{-9}$	$0.07 imes 10^{-9}$	5×10^{-9}

The dagger refers to a measurement in the range $1 < q^2 < 6 \text{ GeV}^2/c^2$

TERA-Z: IMPRESSIVE FLAVOR PROGRAM

- very large and clean samples of *B* decays ($\sim 10^6 \times \text{LEP}$)
- production yields at Tera-Z compared to Belle II

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \; / \; \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

- similar yields expected for the new CEPC operation scenario
- comparison with LHCb more complex
 - LHCb has advantage if final state fully reconstructed
 - TeraZ may be better for neutrals or missing eng. final state

THE REASONS FOR IMPROVED MEASUREMENTS

- in many cases the theory error not saturated
 - determination of *γ* angle
 - *B* and *B_s* mixing phases
 - lepton flavor universality ratios
 - lepton violating modes
 - ...
- with ~100x increase in datasets will probe fairly generic BSM scenarios
 - in many respects complementary to the high p_T program

FLAVOR @ CEPC

 can make clear improvements in the "standard" flavor observables

• $\beta_{s'}$, γ , etc

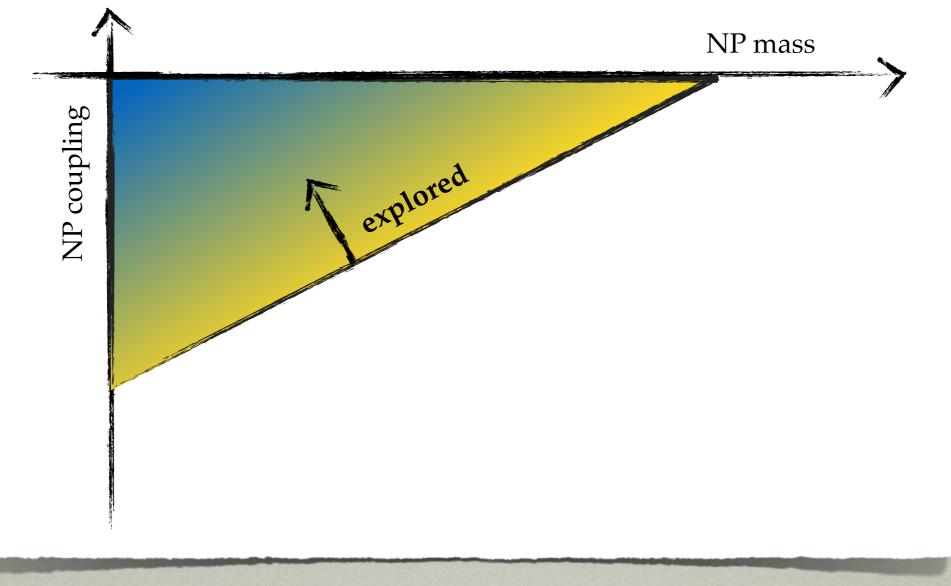
- there are also unique measurements
 - due to the initial states
 - $|V_{cb}|$ from $W \to cb$
 - FV Z decays
 - $B_{c'}$ B_s decays
 - or due to final states
 - rare B decays into invisibles

J. Zupan Flavor theory...

RARE Z DECAYS

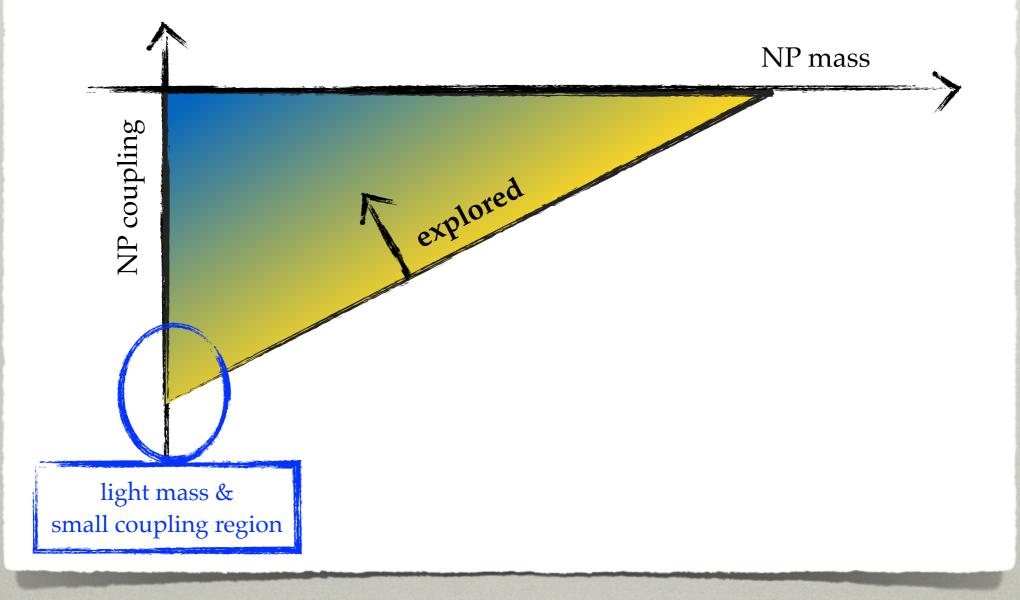
- large increase in sensitivity to $Z \rightarrow e\mu, e\tau, \mu\tau$
- not excluded by $\tau \to 3\mu, \tau \to 3e$

Measurement	Current [126]	FCC [115]	Tera- Z Prelim. [127]	Comments
${ m BR}(Z o au\mu)$	$< 1.2 \times 10^{-5}$	$\mathcal{O}(10^{-9})$	same	$ au au$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limited
$BR(Z \to \tau e)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$ au au$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limited
$BR(Z \to \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-1}$	0 ${\cal O}(10^{-9})$	PID limited

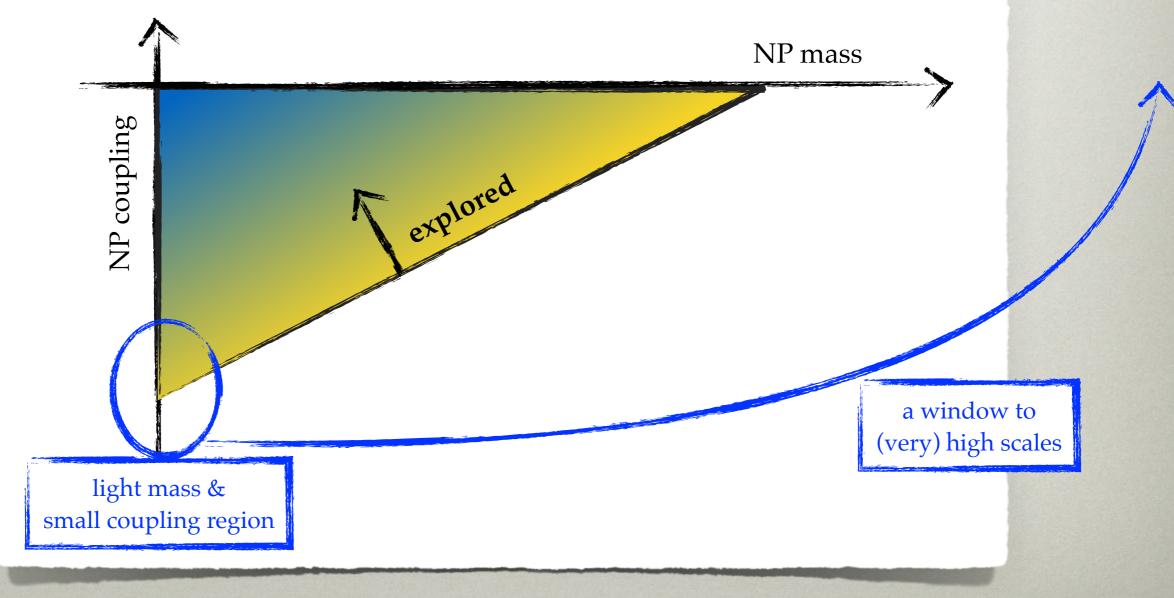

CEPC for Snowmass, 2205.08553

INVISIBLE DECAYS

- decays of the form $B \rightarrow K+MET$, $B \rightarrow \rho+MET$,...
 - could be due to $B \rightarrow K + X$, with X long lived
 - if *X* is light (say below eV) long lifetimes on collider scales natural


THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

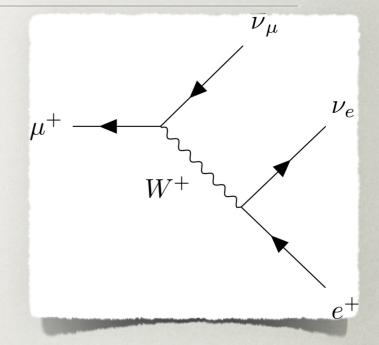

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

LIGHT NEW PARTICLES


- how generic are light new particles?
- any spontaneously broken global symmetry
 - ⇒ massless Nambu-Goldstone boson

PORTALS

Portal	Interactions
Dark Photon, A'_{μ}	$-\epsilon F'_{\mu\nu}B^{\mu\nu}$
Dark Higgs, S	$-\epsilon F'_{\mu\nu}B^{\mu\nu}$ $(\mu S + \lambda S^2)H^{\dagger}H$
Heavy Neutral Lepton, N	$y_N LHN$
Axion-like pseudo scalar, a	$aF ilde{F}/f_a,aG ilde{G}/f_a,ig(ar{\psi}\gamma^\mu\gamma_5\psiig)\partial_\mu a/f_a$

LIGHT NEW PHYSICS \Rightarrow PROBE OF HIGH SCALES

- rare decays into a light state, X, e.g.,
 B → KX or μ → eX,
 - exquisite probes of UV physics
- parametric gains compared to probing NP through dim-6 ops.

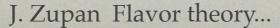
- SM decay width power suppressed: $\Gamma_M \propto m_M^5 / m_W^4$
- if through dim 5 op. suppressed by $1/f_a$
 - $\Rightarrow Br(B \to K\varphi) \propto (m_W^2/f_a m_B)^2$
 - similar for dim 4
- no such $1/m_M$ enhancement for dim. 6 couplings
 - $Br(\mu \to 3e) \propto (m_W/\Lambda)^4$

J. Zupan Flavor theory...

CEPC workshop, May 24, 2022

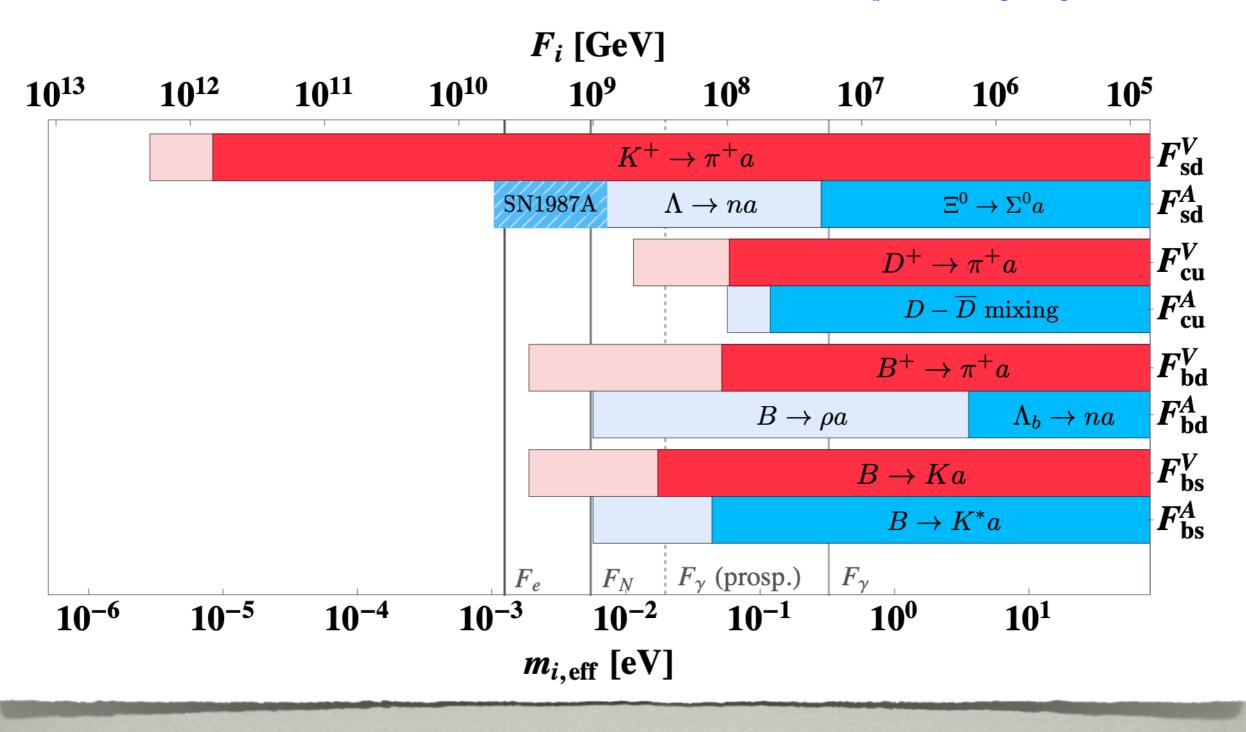
UPSHOT

• searching for $K \rightarrow \pi X$, $B \rightarrow KX$, $\tau \rightarrow \mu X$ decays expect to reach very high UV scales


CEPC workshop, May 24, 2022

EXAMPLE: FLAVOR VIOLATING QCD AXION

Martin Camalich, Pospelov, Vuong, Ziegler, JZ, 2002.04623


- QCD axion with FV couplings to quarks
 - solves the strong CP problem
 - can be a cold DM candidate
 - effectively massless in FV transitions
- general analysis, allowing for FV couplings as well
 - first focus on quark FV transitions

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\text{em}}}{8\pi} \frac{a}{f_a} F\tilde{F} + \frac{\partial_\mu a}{2f_a} \bar{f}_i \gamma^\mu (C_{f_i f_j}^V + C_{f_i f_j}^A \gamma_5) f_j$$

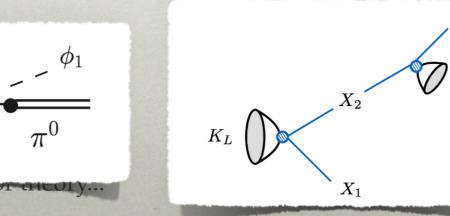
THE STRONGEST FV CONSTRAINTS

Martin Camalich, Pospelov, Vuong, Ziegler, JZ, 2002.04623

J. Zupan Flavor theory...

CEPC workshop, May 24, 2022

GN VIOLATING MODELS


- one can use SU(3) related modes
 - $B_d \to Ka \text{ vs. } B_s \to Ka$
 - $B_d \to \rho a \text{ vs. } B_s \to K^* a$
 - $B \to K^* a \operatorname{vs} B_s \to \phi a$
 -

 K_L

- there are also decay modes where spectator quark participates
 - example: GN violating modes that explain KOTO
 - B_d or B_s mix into dark sector
 - possible to have $B_s \rightarrow \pi$ +MET with very suppressed signal in *B* decays Ziegler, JZ, Zwick

 X_1

Ziegler, JZ, Zwicky, 2005.00451 Hostert, Kaneta, Pospelov, 2005.07102

CEPC workshop, May 24, 2022

CONCLUSIONS

- we are entering a new era of precision measurements: Belle 2, LHCb, muon experiments, dark sector searches,
- flavor program at CEPC can improve on many observables

especially with invisible final states

BACKUP SLIDES