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I. Introduction 

v Higgs boson discovery -> what was the nature of EWSB? 
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• In SM, the EWPT is a crossover transition
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EWSB Transition in BSM 
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Ø EffecLve potenLal a funcLon of 
mulLple order parameters. 

EW vacuum 
𝜙

𝑉#$$(ℎ, 𝜙)

Ø Possible of mulL-step phase transiLon 

h



FOEWPT from BSM
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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Taken from Michael
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I. Introduc2on 

v Higgs boson discovery -> what was the nature of EWSB? 
v FOEWPT could be probed by collider and GW detectors.   

Ø FOEWPT occurred at EW scale and new physics couples quite strongly to 
Higgs -> probed by future collider detectors.

Ø FOEWPT can generates a stochastic background of GW which can be 
accessible by next-generation GW detector such as LISA

1
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The kineBc energy of bubbles is transferred to 
GW either by:  
• Bubble collisions
• InjecBon of energy into the plasma fluid 
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II. Theore2cal Robustness
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Approach towards thermodynamics 
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For a review see e.g P. M. Schicho, T. V. I. 
Tenkanen, J. Osterman: 2102.11145

Dimensional ReducBon 



Non-perturbative vs Perturbative 
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A. Non-perturba.ve

• Most reliable determinaFon of character of 
EWPT & dependence on parameters

• Broad survey of scenarios & parameter 
space not viable

B. Perturba.ve

• Most feasible approach to survey broad 
ranges of models, analyze parameter space, 
& predict experimental signatures

• QuanFtaFve reliability needs to be verified 

Credit: MRM
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Dimensional reduc2on

Taken from Tuomas
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FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +

ā2,3

2
�
†
�⌃a⌃a

. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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µ̄
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ḡ4
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Thermal resummaLons: 
systemaLcally implemented
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new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form
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scalar + L (3)
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
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2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
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� + �̄3(�
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�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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, y =
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ḡ4
3
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
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2
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+
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. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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ḡ2
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, y =
µ̄

2
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ḡ4
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. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Effective “SM-like” theory 
parameters are functions 
of BSM parameters
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
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�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
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�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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P. Fileviez Pérez, H.Patel, M.J. Ramsey-Musolf, K. Wang. 
PRD 79 (2009), 055024 



Patterns of phase transition
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• Possibility of multiple step transition has been confirmed by lattice 
simulation L. Niemi, M. Ramsey-Musolf, T. Tenkanen, D. Weir, PRL 126, 171802 (2021)

Non-perturbaBve

Two Step
𝑏( = 0.25

1 Step 1st OEWPT

Crossover

H.Patel, M.J. Ramsey-Musolf, PRD 88 (2013), 035013 



Phase structure diagram
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𝑏( = 1.0
EFT+ Non-perturba1ve

2 Step

1 Step FO

Friedrich, MJRM, Tenkanen, Tran 2203.05889

Crossover
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𝑏( = 1.0
EFT+ Non-perturbative

2 Step

1 Step FO

• Strength and duration of the transition depend strongly on 𝒂𝟐

Friedrich, MJRM, Tenkanen, Tran 2203.05889

DECIGO

eLISA

LISA

2 Step

Crossover



Collider search
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𝛿)) 𝐵𝑅(Σ* → 𝑍𝑍)

These observables can be measured 
at future colliders such as HL-LHC 
and CEPC



Combination of GW-collider
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Lisa

Hypothetical set of measurements: 

BMA: 𝑚" + 𝛿##

BMA’ : BMA + 𝐵𝑅(Σ$ → 𝑍𝑍)

v GW-collider overlapped à model is responsible to both GW and collider signals
v If collider observed triplet scalar but the collider regions don’t overlap with LISA 

region à model is not responsible to GW signal à need another BSM

FCC-ee
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v Determining the thermal history of EWSB is not only 
theoretically interesting but also practical importance for 
GW

v We used the EFT and non-perturbative calculation for 
determining the nature of  EWPT in BSM. 

v We provide a roadmap for analyzing the interplay 
between future collider observations and the detection 
of a GW signal produced by a 1st OEWPT.

v We show that a combination of collider and GW 
measurements can determine the parameter space in a 
real scalar triplet extension. 
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EWPT: collider target 

v FOEWPT could be probed by collider and GW detectors.   
Ø FOEWPT occurred at EW scale and new physics couples quite strongly to 

Higgs -> probed by future collider detectors.

3
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The Electroweak Phase Transition: A Collider Target
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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FIG. 4: Gluon luminosity ratio

ECM(TeV) M� (GeV) sin ✓ � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 100 NN 135 fb 3 NN
714 NN NN 3 NN

100 100 NN 135 fb 3 NN
714 NN NN 3 NN

14 714 0.01 135 fb 3 NN
100 714 0.01 NN 30 NN

TABLE IV: Single heavy higgs production via ggF.

VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK

VIII. FORMULAE
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• Set scale for collider

• New scalar mass should not be too heavy 

Michael J. Ramsey-Musolf: 1912.07189

Mass new scalar < 700 GeV
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
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T
12⇡
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{b}0
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b(�, T ) � m2
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, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
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g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)

• For a strong 1st OEWPT: prevent baryon number washout

| sinq | > 0.01~

| Dl / l | > 0.003~

h

f

TEW

a1 H2f : T = 0  
tree-level effect
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
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12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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True vac.False vac.

• A 1st order phase transiLon proceeds by nucleaLon 
of bubbles. 

𝑥⃗

Field space Position space

• The bubble nucleaLon rate per unit volume per 
unit Lme 

𝑆+ 𝑇 : the three dimensional Euclidean acBon 


