

季收道研究所 TSUNG-DAO LEE INSTITUTE

Addressing the Gravitational Wave – Collider Inverse Problem

V.Q. Tran Tsung-Dao Lee Institute

In collaboration with Leon S. Friedrich, Michael J. Ramsey-Musolf, Tuomas V. I. Tenkanen Based on arxiv:<u>2203.05889</u>

Joint Workshop of the CEPC Physics, Software and New Detector Concept May 23-25, 2022

General picture and key questions

General picture and key questions

Can combination of collider and GW observations be used to determine the BSM scenario responsible for the observed signals?

General picture and key questions

- Can combination of collider and GW observations be used to determine the BSM scenario responsible for the observed signals?
- How reliable are the computations that attempt to address the above question?

- I. Introduction
- II. Theoretical Robustness
- III. GW-Collider Inverse Problem: Real Triplet scalar extension
- IV. Summary

I. Introduction

Higgs boson discovery -> what was the nature of EWSB?

• In SM, the EWPT is a crossover transition

EW Phase Diagram

BSM can modify this thermal history!

EWSB Transition in BSM

FOEWPT from BSM

Taken from Michael

V.Q.Tran – GW-collider – CEPC workshop

Higgs boson discovery -> what was the nature of EWSB?

FOEWPT could be probed by collider and GW detectors.

- Higgs boson discovery -> what was the nature of EWSB?
- FOEWPT could be probed by collider and GW detectors.
 - FOEWPT occurred at EW scale and new physics couples quite strongly to Higgs -> probed by future collider detectors.

- Higgs boson discovery -> what was the nature of EWSB?
- FOEWPT could be probed by collider and GW detectors.
 - FOEWPT occurred at EW scale and new physics couples quite strongly to Higgs -> probed by future collider detectors.
 - FOEWPT can generates a stochastic background of GW which can be accessible by next-generation GW detector such as LISA

The kinetic energy of bubbles is transferred to GW either by:

- Bubble collisions
- Injection of energy into the plasma fluid

II. Theoretical Robustness

Approach towards thermodynamics

A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter space not viable
- **B.** Perturbative
 - Most feasible approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
 - Quantitative reliability needs to be verified

Credit: MRM

Matsubara decomposition:

$$\phi(\tau, \mathbf{x}) = T \sum_{n} \tilde{\phi}(\mathbf{p}) e^{i\omega_{n}\tau}, \ \omega_{n} = \begin{cases} 2\pi nT & \text{bosons} \\ (2n+1)\pi T & \text{fermions} \end{cases}$$

• Propagators:
$$\frac{1}{\mathbf{p}^2 + m^2 + \omega_n^2}$$

▶ Modes with $\omega_n \neq 0$ are heavy and decouple at distances $\gg 1/T \rightarrow$ can be integrated out! (dimensional reduction)

Taken from Tuomas

V.Q.Tran – GW-collider – CEPC workshop

Lattice simulations exist (e.g., Kajantie et al '95)

Heavy BSM scalar

O. Grould, J.Kozaczuk, L.Niemi, M.J.Ramsey-Musolf, T.V.I Tenkanen, D.J.Weir arXiv:1903.11604

Heavy BSM scalar

 A GW signal detectable by LISA generation
 experiments is likely only if new scalar is light enough to be dynamical

III. GW-collider inverse problem

Triplet scalar extension model

P. Fileviez Pérez, H.Patel, M.J. Ramsey-Musolf, K. Wang. Scalar field content: PRD 79 (2009), 055024 $H = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v_0 + h + i\phi^0) \end{pmatrix}, \qquad \vec{\Sigma} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 + x_0 \end{pmatrix}, \qquad \underline{\Sigma}^{\pm} = (\sigma_1 \mp i\sigma_2)/\sqrt{2} \text{ and } \underline{\Sigma}^0 = \sigma_3,$ SU(2) triplet Higgs doublet $\Sigma = (1, \mathbf{3}, 0) = ec{T} \cdot ec{\Sigma} = rac{1}{2} \left(egin{array}{cc} \Sigma^0 & \sqrt{2\Sigma^+} \ \sqrt{2\Sigma^-} & -\Sigma^0 \end{array}
ight),$ Scalar potential: new particle Higgs portal interaction mass + self coupling Standard model $V(H,\Sigma) = -\mu^2 H^\dagger H + \lambda (H^\dagger H)^4 \left[-rac{1}{2} \mu_\Sigma^2 ec{\Sigma}^2 + rac{b_4}{4} (ec{\Sigma}^2)^2
ight]$ $\left|+a_{1}H^{\dagger}\Sigma H+\frac{a_{2}}{2}H^{\dagger}H\vec{\Sigma}^{2}\right|$ Breaks Z₂ symmetry

Four unmeasured parameters: μ_{Σ}^2 , a_1 , a_2 , b_4

Patterns of phase transition

H.Patel, M.J. Ramsey-Musolf, PRD 88 (2013), 035013

• Possibility of multiple step transition has been confirmed by lattice simulation L. Niemi, M. Ramsey-Musolf, T. Tenkanen, D. Weir, PRL 126, 171802 (2021)

Friedrich, MJRM, Tenkanen, Tran 2203.05889

Phase structure diagram

Strength and duration of the transition depend strongly on a₂

Collider search

These observables can be measured at **future colliders** such as HL-LHC and CEPC

Combination of GW-collider

♦ GW-collider overlapped → model is responsible to both GW and collider signals
 ♦ If collider observed triplet scalar but the collider regions don't overlap with LISA region → model is not responsible to GW signal → need another BSM

- Determining the thermal history of EWSB is not only theoretically interesting but also practical importance for GW
- We used the EFT and non-perturbative calculation for determining the nature of EWPT in BSM.
- We provide a roadmap for analyzing the interplay between future collider observations and the detection of a GW signal produced by a 1st OEWPT.
- We show that a combination of collider and GW measurements can determine the parameter space in a real scalar triplet extension.

Thank you

Backup slides

- FOEWPT could be probed by collider and GW detectors.
 FOEWPT occurred at EW scale and new physics couples quite strongly to
 - Higgs -> probed by future collider detectors.
 - Set scale for collider

 $V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4$

$$T_0^2 = (8\lambda + \text{ loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$
$$T_{\text{EW}} \equiv T_0 \approx 140 \text{ GeV}$$

• New scalar mass should **not be too heavy**

Mass new scalar < 700 GeV

Michael J. Ramsey-Musolf: 1912.07189

V.Q.Tran – GW-collider – CEPC workshop

Michael J. Ramsey-Musolf: 1912.07189

• For a strong 1st OEWPT: prevent baryon number washout

GW from 1st order EWPT

Pressure

True vac.

- A 1st order phase transition proceeds by nucleation of bubbles.
- The bubble nucleation rate per unit volume per unit time

$$\Gamma(T) \simeq T^4 e^{-\frac{S_3(T)}{T}}$$

 $S_3(T)$: the three dimensional Euclidean action

Friction

Wall