Status of TPC detector R&D for CEPC

<u>Huirong Qi</u>, Zhi Deng, ZhiYang Yuan, Yue Chang, Liwen Yu Jian Zhang, Xin She, Yulan Li, Wei Liu, Hui Gong, Hongyu Zhang Manqi Ruan, Gang Li, and some contributions from LCTPC

> Institute of High Energy Physics, CAS Tsinghua University Joint Workshop of the CEPC, 23, May 2022, Beijing

Content

- Motivation
- TPC technology R&D
- Feasibility of pixelated readout
- Prototype R&D plan
- Summary

TPC detector@ Future e+e- Colliders

- TPC detector acts the key role at the future e+e- Colliders
- Some advantages of TPC detector
 - Operation under 3 Tesla magnetic field
 - Large number of 3D space points
 - Very low material budget

Physics requirements

- Provide decent #Hits (for track finding) with high spatial resolution compatible with PFA design (low material)
 - dP/p ~ 0.1%
- Provide dE/dx + dN/dx ~ 2-3%
 - Essential for Flavor @ Z pole
 - Beneficial for jet & differential at higher energy

Motivation: Challenges of TPC

- Pad readout TPC operational at modest Lumi @ Higgs, with 3 T Bfield or higher.
- Pixelated readout TPC operational at high Lumi (2 E36) @ Z & 2 T

B-Field

- CEPC @ Z pole with 50 MW: 1.92 E36
- FCC ee @ Z pole 2.3 E36
- Challenges of TPC as main tracker
 - Ion distortion?
 - Material Budget? (Compatibility)
 - Total power & Readout?
 - #Hits & Intrinsic spatial resolution?

Pad TPC technology

- At a circular collider CEPC there is place for different experiments, one of the detector concept could use a TPC as the main tracker.
- For Higgs, W and top running **no problem** for all TPC read out technologies.
- Laser TPC prototype has been successfully developed in last 6 years at IHEP.

Pad TPC for collider

- Active area: 2×10m²
- One option for endplate readout
 - GEM or Micromegas
 - $-1 \times 6 \text{ mm}^2 \text{ pads}$
 - 10⁶ Pads
 - 84 modules
 - Module size: 200×170mm²
 - Readout: Super ALTRO
 - CO₂ cooling

Pixlated TPC technology

- A pixelated TPC is a good option to provide realistic physics requirements and can work at high luminosity (2 E36) on CEPC.
- Pixelated \rightarrow better resolution \rightarrow low gain(<2000) \rightarrow less distortion
- Pixelated readout TPC is a realistic option to provide at CEPC
 - Can deal with high rates (MHz/cm^2)
 - High spatial resolution \rightarrow better momentum resolution
 - dE/dx + Cluster counting (In space)
 - Excellent two tracks separation

track of high energetic particle

Standard charge collection:

Pads (1mm×6mm)/ long strips Instead:

Bump bond pads are used as charge collection pads.

7

Highlight: Good spatial resolution

• Status of TPC detector R&D at IHEP

- 1. TPC detector module with the ions suppression
- 2. Status of TPC prototype using UV laser

#1. TPC detector module R&D

- Studies have been done using the different active area of the hybrid TPC detector modules
 - Active area: from 50mm \times 50mm to 200mm \times 200mm
 - Tested under the different mixture gases
- Validated IBF×Gain using the TPC detector module
 - IBF×Gain \leq 5@Gain/5000
 - Gas gain<2000, IBF×Gain \leq 1 using MPGD as readout

Results of different sizes of the hybrid TPC detector modules

#2. TPC prototype R&D

- Successfully to develop the TPC prototype integrated 42 UV laser tracks
- Spatial resolution, dE/dx resolution achieved with the pseudo-tracks (DONE)

TPC prototype R&D using 266nm UV laser tracks

#3. TPC prototype R&D

- Spatial resolution can reach to about 100um along the drift length of the TPC prototype and it can meet the physics requirement of CEPC
- Pseudo-tracks with 220 layers (same as the actual size of CEPC detector concept) and dE/dx can reach to 3.36 \pm 0.26%

Results of the spatial resolution and dE/dx

• Feasibility of pixelated readout TPC

- 1. Material budget of endplate/barrel
- 2. Ions affect and distortion
- 3. Occupancy
- 4. Running at 2 Tesla

#1. Material budget of endplate/barrel (OK)

- Typical requirement: $\sim 0.1 X_0$ at Barrel.
- At CDR setup (Pad TPC): conservative implementation of material budget
 - 0.1 X_0 at Barrel, 0.4 X_0 at endplate (sufficient for any readout with cooling)
 - Sizeable effects on detector performance, but tolerable
 - Observed on Photon conversion, PFA, ...
- Pixelated readout TPC can reduce the material from CDR setup

#2. lons affect and distortion

- Distortion: proportional to event rate, ion back flow and gain. Largest distortion occurs at the inner region
- Analysis (cite#1) shows that at
 - IBF×Gain ~ 1
 - Lumi ~ 2E36
 - Hit from Physics event only
 - Distortion ~ 100 micrometer ~ pixelated size
 - Might limit spatial/momentum measurement
- Open question: to be addressed by R&D
 - Correction by at least 1 order of magnitude?

==> future simulation studies...

- In-situ calibration with Laser system/Z->mumu event (cite#2)
 - ==> laser system test ... collaborative studies with LCTPC
- Contribution from other sources, especially at Z pole

==> MDI, Beam background

Cite#2 Correcting for Distortions due to Ionization

#3. Occupancy (Safe)

- Low voxel occupancy : 1E-5 to 1E-6 (cite#3)
- At 2 E36 with Physics event only, even bunch distribution(cite#4).
 - Pad readout (1mm \times 6mm), inner most occupancy 1 E-4
 - Pixelated readout (55 $um \times$ 55um), much **LOWER** inner most occupancy ~ 1 E-6
- Pixelated readout can easily handle a high hits rate at Z pole.
 - The test beam showed GridPix TPC prototype can handle up to 2.6M hits/s per chip (cite#5).
- Reconstruction algorithm with high Pile Up need to be developed.

Marlin TPC software package

2000

Cite#3 Occupancy in the CLIC

Cite#4 https://doi.org/10.1088/1748-0221/12/07/P07005

Cite#5 GridPix detectors

#4. Running at 2 Tesla

- TPC can work well at the 2 T B-field without any E×B effect.
- Momentum resolution is better (>20%) compared with the pad readout technology at the same geometry.
 - Pixelated technology: ~10,000hits/track; Pad: 220hits/track
 - Transverse diffusion constant is same level at 2 T & 3 T
- Open question: to be addressed by R&D
 - Optimized TPC geometry at 2 T B-field

Beam induced background at 2 T B-field

• Feasibility of pixelated readout TPC

- Material budget of endplate/barrel V
- Occupancy √
- Running at 2 Tesla √
- Ions affect and distortion **√** (need more R&D)

Prototype R&D plan

- Advantage and realized R&D
 - Prototype R&D plan
 - Improved dE/dx
 - Optimization of cluster/pixel size

Prototype plan #1

Realization of pixelated technology collaborated with Tsinghua

Bump bond pixelated readout with Micromegas detector	Niodule size	To be addressed by R&D
 ≥300um×300um Developed the readout chip by Deng Zhi (Tsinghua) Developed the Micromogas 	1-2 cm^2	 Research on pixelated readout technology realization Optimization of cluster profile and pad size Study of the 'dN_{cl}+dx'
 Developed the Micromegas detector sensor at IHEP Development of the new module and prototype 	100 cm^2	 Study the distortion using UV laser tracks and UV lamp to create ions disk In-situ calibration with UV Laser system Study of the 'dE/dx+dN_{cl}/dx'
Micromegas detector Pixelated readout PCB board Deign+commise at IHEP/Tsing		gn+assembled Bump bond Bump bond Deign+commissioning at IHEP/Tsinghua Tsinghua University University

Prototype plan #2

- Realization of pixelated technology using GridPix chip collaborated Bonn
 - 110um×110um and smaller
 - Design the different readout pixelated size
 - Collaborated with Bonn University to produce the new

prototype (Peter, Jan and Jochen from Bonn)

• Study using UV laser tracks

Production of GridPixes

- a) Cleaning
- b) Deposition of Protection layer
- c) SU-8 covering
- d) Exposure with mask
- e) Aluminium layer is deposited
- f) Another layer of photoresist is applied, exposer with a mask creates a hole pattern, and the holes are chemically etched
- g) The wafer is diced
- h) The unexposed SU-8 is resolved

Study the cluster/pixel size

- R&D plan will mainly focus on making pixelated TPC work
- Using the existing UV laser TPC prototype
- Some key issues R&D
 - improve the laser track resolution and cluster size
 - improved dE/dx to 2-3% level (TOA+TOT methods)
 - Pixel size:(300µm or similar level size)
 - Micromegas + WASA ASIC Chips (Gain: 40mv/fC)
 - Almost without IBF (Gain< 2000)

Resuls of the laser TPC prototype

dE/dx along drift length

Electron cluster profile

10bit TOT + 12bit TOA

 $dE/dx + dN_{cl}/dx$

Summary

- Pad readout TPC can operate @ CEPC W/Higgs operation, with 3 T B-field or higher.
 - A laser TPC prototype has been successfully developed and studied at IHEP in the last 6 years. Ionback flow can be reduced to 1 level at gain 2000.
- High Lumi operation (2 E36) @ Z with 2 T B-Field is challenge for gaseous.
 - Material budget, construction cost, power & cooling, Occupancy is OK.
 - Further study is needed to better understand the Distortion (induced by ion charge) and beam background:
 - Geometry Optimization
 - Distortion correction & in-situ calibration
 - Beam background validation & simulation
- Pixelated readout TPC is promising, compared to Pad readout:
 - Much Lower Occupancy;
 - Lower Ion backflow;
 - High Precision;
 - Potential for dN/dx, essential for PID
- R&D plan focus on the Pixelated TPC readout & prototype, optimization to the local configuration (for dN/dx, power consumption, ...) and global geometry optimization (inner Radius, etc)
- Good International/domestic Partners: LCTPC, CEA-Saclay, NIKHEF, Tsinghua...
 - And, any collaboration will be welcome

Many Thanks