

W mass and the Future

Zhen Liu University of Minnesota <u>May. 25, 2022</u>

Outline

- CDF Measurement
- Theory Assessment
 - Tension with SM
 - Shifts and Uncertainties
 - BSM interpretations
 - mW @ CEPC

Outline

• CDF Measurement

- Theory Assessment
 - Tension with SM
 - Shifts and Uncertainties
 - BSM interpretations
 - mW @ CEPC

CDF Measurement

Distribution	W boson mass (MeV)	χ^2 /dof
$\overline{m_{\mathrm{T}}(e,\mathbf{v})}$	$80,429.1 \pm 10.3_{stat} \pm 8.5_{syst}$	39/48
$p_{\mathrm{T}}^{\ell}(e)$	$80,411.4 \pm 10.7_{stat} \pm 11.8_{syst}$	83/62
$p_{\rm T}^{\rm v}(e)$	$80,\!426.3\pm14.5_{stat}\pm11.7_{syst}$	69/62
$m_{\mathrm{T}}(\mu, \nu)$	$80,446.1 \pm 9.2_{stat} \pm 7.3_{syst}$	50/48
$p_{\rm T}^{\ell}(\mu)$	$80,428.2 \pm 9.6_{stat} \pm 10.3_{syst}$	82/62
$p_{\mathrm{T}}^{\mathrm{v}}(\mu)$	$80,428.9 \pm 13.1_{stat} \pm 10.9_{syst}$	63/62
Combination	$80,433.5 \pm 6.4_{stat} \pm 6.9_{syst}$	7.4/5

•
$$M_T = \sqrt{2 \left(p_T^{\ell} p_T^{\nu} - \vec{p}_T^{\ell} \cdot \vec{p}_T^{\nu} \right)}$$

• p_T^{ℓ}
• p_T^{ν} with $(\vec{p}_T^{\nu} = -\vec{p}_T^{\ell} - \vec{u}_T)$

CDF II extracted the W mass with high precision energy measurements, via templates fits of various distributions, with fixed Γ_W (a SM single parameter fit).

A

W mass & Future

Tension with other experiments

also LHCb: 80,354 ± 32 MeV

- 7σ tension with SM (discuss later)
- ~3 σ tension with other experiments

Zhen Liu

W mass & Future

CEPC Meeting 2022

Tension with other experiments

also LHCb: $80,354 \pm 32$ MeV

Outline

• CDF Measurement

- Theory Assessment
 - Tension with SM
 - Shifts and Uncertainties
 - BSM interpretations
 - mW @ CEPC

Tension with SM

 $M_Z, \alpha, G_\mu, \Delta r$: $M_W^2\left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}G_{\mu}} \left(1 + \Delta r\right)$ loop corrections ν_{μ} ν_{μ} μ^{-} $\mu^ W^{-}$ ν_e ν_e

SM is over-constrained (hence predictive). We are testing it from all angles! Precision directly probes new physics.

Parameter	Fit Result
G_{μ} [GeV ⁻²]	1.1663787×10^{-5}
$\alpha(0)^{-1}$	137.035999139
$\Delta lpha_{had}^{(5)}(M_Z^2)$	0.027627 ± 0.000096
M_Z [GeV]	91.1883 ± 0.0021
M_H [GeV]	125.21 ± 0.12
$m_t \; [\text{GeV}]$	172.75 ± 0.44
M_W [GeV]	80.3591 ± 0.0052

Sven Heinemeyer – IDT-WG3-Phys Open Meeting on M_W , 12.05.2022

Zhen Liu

Outline

- CDF Measurement
- Theory Assessment
 - Tension with SM
 - Shifts and Uncertainties
 - BSM interpretationsmW @ CEPC

Theory uncertainties

Rescaling W pT using Z pT

- Ratio is stable to higher order corrections at small p_T
- Scale uncertainty only using correlated prediction
- Need to investigate the CDF estimated uncertainty from this ratio

05/25/2022

Issacson, Fu, Yuan, 2205.02788

Theory uncertainties

Issacson, Fu, Yuan, <u>2205.02788</u>

Best Fit: $M_W = 80,386$ MeV

Best Fit: $M_W = 80,388$ MeV

Best Fit: $M_W = 80,389$ MeV

	Mass Shift [MeV]				
Observable	ResBos2	+Detector Effect+FSR			
m_T	1.5 ± 0.5	$0.2\pm1.8\pm1.0$			
$p_T(\ell)$	3.1 ± 2.1	$4.3 \pm 2.7 \pm 1.3$			
$p_T(u)$	4.5 ± 2.1	$3.0\pm3.4\pm2.2$			

Zhen Liu

W mass & Future

re CEPC Meeting 2022

PDF Uncertainties

Gao, Liu, Xie, <u>2205.03942</u>

mean value of m_T

estimate shift and PDF unc. of W mass

$\delta M_{\rm err}$ in MoV	eto	NNDDF2 1	CT18	MMHT2014	NNDDF4 0	MCHT2020
om _W m mev	sta.	NNF DF 5.1	0110	MMII 1 2014	MNFDF4.0	M5H12020
$\langle M_T \rangle$ (LO)	—	$0^{+8.3}_{-8.3}$	$-1.0^{+8.3}_{-11.4}$	$-3.3^{+7.4}_{-4.2}$	$+7.8^{+5.1}_{-5.1}$	$-3.1^{+6.7}_{-5.7}$
χ^2 fit (LO)	8.0	$0^{+7.6}_{-7.6}$	$-1.0^{+5.4}_{-8.6}$	$-3.3^{+6.1}_{-3.0}$	$+8.0^{+3.7}_{-3.7}$	$-3.0^{+5.0}_{-4.0}$
$\langle M_T \rangle$ (NLO)	—	$0^{+5.9}_{-5.9}$	$-4.2^{+8.8}_{-13.3}$	$-5.0^{+6.7}_{-5.3}$	$+6.9^{+6.2}_{-6.2}$	$-7.6^{+7.9}_{-6.7}$
χ^2 fit (NLO)	8.0	$0^{+4.2}_{-4.2}$	$-4.3^{+5.4}_{-10.1}$	$-5.1^{+4.8}_{-3.4}$	$+7.1^{+4.5}_{-4.5}$	$-7.8^{+5.7}_{-4.5}$
CDF	9.2	$0^{+3.9}_{-3.9}$	—	—	—	—

Zhen Liu

W mass & Future

CEPC Meeting 2022

05/25/2022

14

PDF Uncertainties (continued)

Parton distributions need representative sampling

Zhen Liu

W mass & Future

Outline

- CDF Measurement
- Theory Assessment
 - Tension with SM
 - Shifts and Uncertainties
 - BSM interpretations
 - mW @ CEPC

SMEFT interpretations

Specifications/models		d o f	χ^2			
		a.o.1.	pre CDF-II	$m_W^{ m combine}$	$m_W^{ m CDF-II}$	
	SM	(3)	31	62	76	
FW/ 6+	S-T	(3)+2	28	30	33	
EW III	S-T- δG_F	(3)+3	28	28	28	
	Universal EW	(3)+8	17	17	17	
	$Z'/W'~(\Delta S=0.1)^{\mathrm{a}}$	$(3)+1^{b}$	29(28)	38(33)	34(31)	
BSM Models	VLQ Top I ($\Delta S = 0.1$)	$(3)+2^{c}$	29~(29)	34(32)	38(34)	
	VLQ Top II ($\Delta S = 0.1$)	(3)+2	28~(53)	33 (31)	37 (33)	
	Top Squark	$(3)+2^{d}$	28	31	34	

Gu, ZL, Ma, Shu, <u>2204.05296</u>

Zhen Liu

Tension with SM

Sven Heinemeyer – IDT-WG3-Phys Open Meeting on M_W , 12.05.2022

Zhen Liu

W mass & Future

CEPC Meeting 2022

Zhen Liu

W mass & Future

CEPC Meeting 2022

8-parameter "Global" SMEFT results

- Assuming flavor universality, SILH-like basis (*O_{HI}* and *O'_{HI}* are eliminated)
- Still prefers the same shift, but the 7σ is diluted... (Strong correlations among c_{WB}, c_T, c_{He} and c¹²²¹_{ℓℓ})
- Large deviation in c_{Hd} from the good-old LEP A^b_{FB} anomaly...

Zhen LiuW mass & FutureCEPC Meeting 2022

	1σ bounds (in %)			correlation matrix						
	old	new CDF	c_{WB}	c_T	c_{He}	c_{Hq}	c'_{Hq}	c_{Hu}	c_{Hd}	$c_{\ell\ell}^{1221}$
c_{WB}	-0.59 ± 0.30	-0.59 ± 0.30	1	0.96~(0.97)	0.96	-0.091	-0.25	-0.16	0.11	0.91
c_T	-0.23 ± 0.14	-0.10 ± 0.14		1	0.93	-0.07	-0.20	-0.16	0.15	0.78(0.80)
c_{He}	-0.25 ± 0.13	-0.25 ± 0.13			1	-0.12	-0.29	-0.14	0.05	0.85
c_{Hq}	-0.07 ± 0.27	-0.07 ± 0.27				1	-0.30	0.60	0.38	-0.13
c'_{Hq}	-0.34 ± 0.27	-0.34 ± 0.27					1	-0.69	0.58	-0.33
c_{Hu}	0.67 ± 0.92	0.68 ± 0.92						1	-0.07	-0.11
c_{Hd}	-4.1 ± 1.5	-4.1 ± 1.5							1	-0.02
$c_{\ell\ell}^{1221}$	-0.56 ± 0.33	-0.84 ± 0.33								1

Zhen Liu

Tree-level new bosons

$$\begin{split} SU(2)_L &\times SU(2)_R \times U(1)_X \\ &\to SU(2)_L \times U(1)_Y \end{split}$$

Z', W' generates T at tree-level. One needs to avoid direct resonance searches by engineering partially mixed leptons to suppress leptonic searches.

Top squarks (degenerate)

Preferred by CDF Preferred by old mW Stop1 less than 400 GeV (current bound; more later) Tachyonic Stop

Zhen Liu

W mass & Future

Degenerate Top Squark not working...

Zhen Liu

W mass & Future

CEPC Meeting 2022

Top squarks (non-degenerate)

W mass & Future

CEPC Meeting 2022

Top squarks

A few more directions could help further enhance or constrain:

- rr (soft mass ratios)
- right-handed sbottom mass
- $tan\beta$
- Addition of slepton contributions (also accommodates muon g-2)*

*Agashe, M, ZL, Sundrum, <u>2203.01796</u> Heinemeyer et al, <u>2203.15710</u>

Zhen Liu

W mass & Future

CEPC Meetir

Coannihilation and LLP

Mono-jet + (soft) displaced tracks

mW and g-2

Zhen Liu W mass & Future CEPC Meeting 2022

05/25/2022

33

Outline

- CDF Measurement
- Theory Assessment
 - Tension with SM
 - Shifts and Errors
 - BSM interpretations
 - mW @ CEPC

CEPC Meeting 2022

W mass Precision

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	$0.1 { m ~MeV} (0.005 { m ~MeV})$	Z threshold	E_{beam}
$\Delta\Gamma_Z$	2.3 MeV [37-41]	$0.025 { m ~MeV} (0.005 { m ~MeV})$	Z threshold	E_{beam}
Δm_W	9 MeV [42-46]	$0.5 { m ~MeV} (0.35 { m ~MeV})$	WW threshold	E_{beam}
$\Delta\Gamma_W$	49 MeV [46-49]	$2.0 { m MeV} (1.8 { m MeV})$	WW threshold	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \mathrm{MeV^a}$	$t\bar{t}$ threshold	
ΔA_e	$4.9 imes 10^{-3}$ [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	0.015 [<mark>37, 53</mark>]		,X	7 to-point Unc.
$\Delta A_{ au}$	$4.3 imes 10^{-3}$ [37, 51–55]	′ _{0.3} new CDF		lecay model
ΔA_b	0.02 [37 , 56]			CD effects
ΔA_c	0.027 [<mark>37, 56</mark>]	0.2		CD effects
$\Delta \sigma_{had}$	37 pb [<mark>37–41</mark>]		/ / j	umiosity
δR_b^0	0.003 [37, 57–61]			on splitting
δR_c^0	0.017 [37 , 57 , 62–65]		90%CI	on splitting
δR_e^0	0.0012 [<mark>37–41</mark>]	-0.1	$-$ ST, $\chi^2_{min}=28.4$	$4_{28,3}$ and t channel
δR^0_μ	0.002 [<mark>37–41</mark>]		$ ST, \chi^{2}_{min}=32.0$	$\hat{e}_{28.3}^{\hat{e}} = E_{beam}$
$\delta R_{ au}^0$	0.017 [<mark>37–41</mark>]	-0.2 -0.2 -0.1 0	.0 0.1 0.2 0	E_{beam}
$\delta N_{ u}$	0.0025 [37, 66]	· · ·	S	energy scale

Zhen Liu

W mass & Futi

(in)Direct Probes of Loop Particles

New CEPC Snowmass paper: 2205.08553

W mass & Future

CEPC Meeting 2022

Probing Stop via loop (Z-pole, Higgs precision)

Fan, Reece, Wang, <u>1412.3107</u> Gori, Gu, Wang, <u>1508.07010</u>

Zhen Liu

W mass & Future

CEPC Meeting 2022

Summary and Outlook

- CDF Measurement
- Theory Assessment
 - Tension with SM
 - Shifts and Uncertainties
 - BSM interpretations
 mW @ CEPC

There are many nice and interesting work by our colleagues (sorry for not covering them here for sake of time). We are excited to explore further!

Zhen LiuW mass & FutureCEPC Meeting 2022

W mass Precision

Updated Prospects Tables

1: Polarized threshold scan

$\Delta M_W \; [{ m MeV}]$	LEP2	ILC	ILC	ILC
$\sqrt{s} [\text{GeV}]$	161	161	161	161
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	0.040	100	480	500
$P(e^{-})$ [%]	0	90	90	80
$P(e^{+})$ [%]	0	60	60	30
statistics	200	2.4	1.1	
background		2.0	0.9	
efficiency		1.2	0.9	
luminosity		1.8	1.2	
polarization		0.9	0.4	
systematics	70	3.0	1.6	
experimental total	210	3.9	1.9	3.0
beam energy	13	0.4	0.4	0.4
theory	-	1.0	1.0	1.0
total	210	4.0	2.2	3.2

Table 10: Current and preliminary anticipated uncertainties in the measurement of M_W at e^+e^- colliders close to WW threshold.

2: $q\bar{q}\ell\nu_{\ell}$

$\Delta M_W \; [{ m MeV}]$	LEP2	ILC	ILC	ILC
$\sqrt{s} [\text{GeV}]$	172-209	250	350	500
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	3.0	2000	200	4000
$P(e^{-})$ [%]	0	80	80	80
$P(e^{+})$ [%]	0	30	30	30
beam energy	9	0.4	0.55	0.8
luminosity spectrum	N/A	1.0	1.4	2.0
hadronization	13	1.3	1.3	1.3
radiative corrections	8	1.2	1.5	1.8
detector effects	10	1.0	1.0	1.0
other systematics	3	0.3	0.3	0.3
total systematics	21	2.3	2.7	3.3
statistical	30	0.75	2.8	0.9
total	36	2.4	3.9	3.4

Table 6: Current and preliminary estimated experimental uncertainties in the measurement of M_W at e^+e^- colliders from kinematic reconstruction in the $q\bar{q}\ell\nu_\ell$ channel with $\ell = e, \mu$.

- Changes wrt Snowmass 2013
- Update with current ILC run plan integrated luminosities
- Halve beam energy uncertainty (10 ppm \rightarrow 5 ppm)
- Include guessed theory uncertainty in threshold total

3: Hadronic mass

ΔM_W [MeV]	ILC	ILC	ILC	ILC
$\sqrt{s} [\text{GeV}]$	250	350	500	1000
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	2000	200	4000	2000
$P(e^{-})$ [%]	80	80	80	80
$P(e^{+})$ [%]	30	30	30	30
jet energy scale	3.0	3.0	3.0	3.0
hadronization	1.5	1.5	1.5	1.5
pileup	0.5	0.7	1.0	2.0
total systematics	3.4	3.4	3.5	3.9
statistical	0.75	2.0	0.5	0.5
total	3.5	4.0	3.5	3.9

Table 8: Preliminary estimated experimental uncertainties in the measurement of M_W at e^+e^- colliders from direct reconstruction of the hadronic mass in single-W and WW events where one W decays hadronically. Does not include WW with $q\bar{q}\ell\nu_{\ell}$ where $\ell = e, \mu$.

Zhen Liu

DIAGNOSTIC POWER: CASE OF TOP SQUARK

Blue: cross section alone Red: with asymmetries

Asymmetries could cover the region where stop contribution to rates being zero, shining lights on the "blind spot".

Sensitivity is low because of all effects are loop-induced and operators are of similar strength. BSM models inducing different tensorial structure of interactions will be best application (for future work).

Asymmetry breaks the flat direction of inclusive rate measurement, and provides novel information about the underlying operator structures.

Zhen Li