

WASA: A Low power consumption ASIC for TPC

Wei Liu^{1,2}, Canwen Liu^{1,2}, **Zhi Deng^{1,2}**, Fule Li³, Yulan Li^{1,2}, Huirong Qi⁴

¹ Department of Engineering Physics, Tsinghua University, Beijing, China
²Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing, China
³Institute of Microelectronics, Tsinghua University, Beijing, China
⁴Institute of High Energy Physics, Chinese Academy of Science, Beijing, China

Joint Workshop of the CEPC Physics, Software and New Detector Concept Beijing, 2022-5-23

Outline

- Introduction
- > The Progress of WASA V1
- > The Progress of WASA V2
- Summary & Future Plan

Introduction

		Momentum resolution (B=3.5T)	$\delta(^{1}/p_{t} \approx 10^{-4}/GeV/c)$		
And and a state of the state of	particle track	δ_{point} in $r\Phi$	<100 µm		
projection s electrons of		δ_{point} in rz	0.4-1.4 mm		
ioniz gas n		Inner radius	329 mm		
end-plate		Outer radius	1800 mm		
Plectric F.		Drift length	2350 mm		
		TPC material budget	$\approx 0.05X_0$ incl. field cage < $0.25X_0$ for readout endcap		
field cage		Pad pitch/no. padrows	$\approx 1 \text{ mm} \times (4 \sim 10 \text{ mm}) / \approx 200$		
		2-hit resolution	$\approx 2 \text{ mm}$		
		Efficiency	>97% for TPC only ($p_t > 1GeV$) >99% all tracking ($p_t > 1GeV$)		

- TPC can provide large-volume high-precision 3D track measurement with stringent material budget
- In order to achieve high spatial resolution, small pads (e.g. 1 mm x 6mm) are needed, resulting ~1 million channel of readout electronics
- Need low power consumption readout electronics working at continuous mode

Chip Architecture

- In order to reduce the power consumption:
 - Using more advanced 65 nm CMOS process favoring digital logics
 - Reducing analog circuits:
 - $CR-(RC)^n \rightarrow CR-RC$, moving high order shaping to digital domain
 - ADC structure : pipeline \rightarrow SAR (Successive Approximation Register)

WASA: WAveform SAmpling FE ASIC for TPC

- WASA V1 :
 - 16 channel AFE+ADC+LVDS data output
 - The Power consumption: AFE in 1.4 mW/ch and ADC in 1 mW/ch
 - Die size in 1950 µm x 2160 µm
 - Submitted in Dec, 2019

Test Setup

• Test Setup

• ASIC Test Board

Test Results: Power Consumption

- The power consumption of the AFE: 1.43 mW/ch (1.40 mW/ch sim.)
- The power consumption of the ADC increases as the sampling rate

Test Results: Transient waveforms

- Transient outputs
 - Differential baseline can be externally adjusted

ADC Transient outputs @ 30MSPS

Test Results: Non-Linearity

• Transient outputs

• The linearity @ gain = 10 mV/fC

Gain = 8.5 LSB/fC = 8.5 x 1.3 mV/fC = 11.05 mV/fC

Test Results: Noise

• Baseline distribution @8.5 LSB/fC, C_{in}=15.2 pF

• ENC after digital trapezoidal filter in MATLAB

ENC:1.24/8.5*6250=911.76 e

Test Results: Timing @ 30 MS/s

• Constant fraction time distribution @ Q_{in} =100 fC,10 mV/fC

Test Results: Fe-55

TPC Work Conditions:

- GEM: 280 V
- Drift Field: 323 V/cm
- Gas: $Ar/CF_4/iC_4H_{10}$ 95/3/2 (T2K)

Transient Waveforms After Digital Filter

Fe-55 Energy Spectrum

14

Test Results: Laser Tracks

TPC Work Conditions:

- GEM: 280 V
- Drift Field: 9000 V/50 cm = 180 V/cm
- Gas: $Ar/CF_4/iC_4H_{10}$ 95/3/2 (T2K)
- Laser: 7.2 mJ @20 Hz
- Sampling Rate: 30 MS/s

Track & Position Resolution (Preliminary)

• Laser Tracks

• Position Resolution

WASA V2

- Digital signal processing:
 - Two stage baseline corrections, learnt from SAMPA
 - Digital trapezoidal filter, to make pulse shape symmetric and shorter
- Trigger logics with two stage data buffer (ring buffer and event buffer)

Integrated Digital Trapezoid Filter

Valentin T. Jordanov, Unfolding-synthesis technique for digital pulse processing. Part 1: Unfolding, NIMA Vol 805, 2016, 63-71

• Transient Outputs

Power Consumption Estimation

- The simulation settings of digital logics @ 1.2 V, tt, 25 C, switch activity = 10% (**Conservatively**)
- The power consumption: 3.36 mW+0.078 mW/MHz x sampling rate in MHz

Sampling Rate MS/s	10	20	30	40	50	60	70	80	90	100
Digital logics: mW/ch	2.03	2.69	3.34	4.0	4.62	5.28	5.90	6.55	7.20	7.85
ADC: mW/ch	0.69	0.81	0.94	1.06	1.19	1.31	1.44			

The Layout of WASA V2 $\,$

- The floor plan in layout:
 - The die size : $3783 \ \mu m \ x \ 2243 \ \mu m$
 - Analog Front-End, SAR ADC, Digital Logics, LVDS driver are supplied by separate power
 - Analog Front-End, SAR ADC, Digital logics, LVDS driver are separated by guarding ring
- The ASIC have been taped out in Jan 12,2022 and is being evaluated.

The Layout of WASA V2

• ASIC Test Board

Summary

- A 16 channel low power readout ASIC WASA V1 has been developed and evaluated
 - The power consumption is 2.49 mW/channel
 - P_{AFE}=1.43 mW/channel
 - $P_{ADC} = 1.06 \text{ mW/channel} @ 40 \text{MS/s}$
 - ENC = 911.7 e @ Cin=15.2 pF, gain=10 mV/fC and can be reduced to 627 e using digital trapezoidal filter
 - Tested with TPC detector at IHEP: OK, more tests with more readout channels
- The second iteration of WASA V2 has also been designed
 - Two stage BC, digital trapezoidal filter, and trigger logics with two stage data buffer are implemented on chip
 - The ASIC have been taped out and is being evaluated.

Future Plan

- Large Pixel Readout
 - 1mm x 6 mm \rightarrow 0.3~0.5 mm pixel
 - Higher precision, higher rate
 - Potential for dN/dx
- Concept Design
 - ROIC +Interposer PCB as RDL
 - High metal coverage, 4-side buttable
 - Low power Energy/Timing measurement ASIC
 - ~100 e noise
 - 5 ns drift time resolution
 - <100 mW/cm2

