Momentum resolution of Pixelated TPC

Gang LI, Linghui Wu, and Huirong QI

CEPC physics & detectors plenary

CEPC Physics & Detectors Plenary, 2022/03/30

Pixelate readout TPC could provide huge number of measurement and better spatial resolution

- A prototype of 55x55μm
 by NIKHEF
 - ✓ 28 k hits of σ_{r_0} =16 µm
- CEPC plans to investigate (assuming 1.4 m thickness)
 - ✓ 200x200 µm
 - $\checkmark~7$ k hits, 58 μm
 - ✓ 300x300 µm

✓ ...

- $\checkmark~4.6$ k hits, $~87~\mu m$
- Here calculates σ_{pT} for different pixel size designs

5000

Gain

2000

Least square: $\chi^2 = (\mathbf{y} - \mathbf{G}\mathbf{a})^T \mathbf{C}_{\mathbf{y}}^{-1} (\mathbf{y} - \mathbf{G}\mathbf{a})$

Covariance of a (helix parameters) is our goal, and ingredients needed are

- *y*: measurements ($r\phi$, z)
- C_y : covariance of y, constructed according to tracker geometries
 - 1. Spatial resolutions ($\sigma_{r\phi'} \sigma_z$)
 - 2. Multiple scattering effect (layout and materials: X/X_0)
- *G*: the Jacobian $G_{mn} = \frac{\partial F(a,y)}{\partial a_m}$

Exact helix used to calculate G_{mn} :

Trick to avoid treating big matrix and speed up:

- adding each 25 layers of TPC together
- resolution/5
 Covariance of 5 track parameters

$$\boldsymbol{C}_a = \left(\boldsymbol{G}^T \boldsymbol{C}_y^{-1} \boldsymbol{G}\right)^{-1}$$

Comparing PAD TPC and pixelated TPC

Geometries

 $\sigma_{r_{\phi}} = pixel/sqrt(12)$ (diffusion under control) $\sigma_z = 2000 \ \mu m$

- **D** Beam pipe (same for all)
- **D** 3 double layers of VXD, 3 silicon tracker layers, and another silicon layer as TPC wrapper (same for all)
- □ TPC: 40 ~180 cm, only change spatial resolution (readout configuration)

- ✓ Pixelated TPC improves momentum resolution significantly
 - > 25% for p< 50 GeV (PAD TPC already very good)
 - > >100% for p> 50 GeV (more precise measurements around sagitta)
- \checkmark Very beneficial for the model independent study of the eeH/µµH and 360 GeV running

100% eff. w/o backgrounds

Angular resolution can also be improved significantly for high momenta tracks

Comparing PAD TPC and pixelated TPC

Conservative assumption on the spatial resolution (taking diffusion effect into account)

 $\sigma_{\mathsf{r}\phi}$

100 μm

 $\sigma_{z} = 2000 \,\mu m$

- Pixelated TPC improves momentum resolution significantly by only increasing # of measurements
 - > 25% for p< 20 GeV (PAD TPC already very good)
 - > 50% for p> 20 GeV (more precise measurements around sagitta)

Summary of the numerical results

	200x200 μm (ideal)	200x200 μm (conservative)	300x300 μm (ideal)	300x300 μm (conservative)	PAD
a (10 ⁻⁵ /GeV)	0.50	0.73	0.77	0.85	2.08
b (10 ⁻³)	0.57	0.57	0.58	0.58	0.73

The CDR reference

$$a \sim 2 \times 10^{-5} \,\mathrm{GeV}^{-1}$$
 and $b \sim 1 \times 10^{-3}$
 $\sigma_{1/p_{\mathrm{T}}} = a \oplus \frac{b}{p \sin^{3/2} \theta} \quad [\,\mathrm{GeV}^{-1}]$

CEPC Physics & Detectors Plenary, 2022/03/30

Summary

Needs X-checks with realistic full Sim & Rec

• TPC with pixelated readout

>huge amount of precise measurements

≻dN/dx + dE/dx, hopeful to achieve 2% resolution

>other advantages : easily engineering, less materials, ...

- Simple calculation with some ideal assumptions
 - The momentum resolution could be improved by 100% for high momentum tracks
 - Significant improvement on the angular resolutions for high momenta

Conservative assumption on the spatial resolution (taking diffusion effect into account)

