Search for scalar leptoquarks in the b $\tau\tau$ final state with the ATLAS detector

Antonio De Maria Nanjing University

Higgs Potential 2022 July 27, 2022

- Predicted in many BSM scenarios and decay to lepton-quark pairs
- Carry color charge, fractional electric charge and non-zero baryon and lepton number
- The cross section of singly-produced LQ not only depends on the mass of LQ but also depends on the Yukawa coupling(λ) of LQ-lepton-quark

LQ search in $b\tau\tau$ final state (CONF)

- Main focus on singly produced scalar LQ:
 - considering $ilde{S_1}$ model with LQ having 4/3e and 3B+L=-2
 - LQ production mostly through quark-gluon fusion and scattering
- Include also pair production of scalar LQs since similar final state
- Assuming LQ exclusive decay in b au
- Scan over several mass and coupling points

• Considered two final states depending on τ decay mode : $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$

	Selection	
Signal Region	ℓ (trigger, isolated), $\tau_{\rm had}$ (medium), $q(\ell) \times q(\tau_{\rm had}) < 0, \ \Delta \phi(\ell, E_{\rm T}^{\rm miss}) < 1.5, m_{\rm vis}(\ell, \tau_{\rm had}) > 100$ GeV, $S_{\rm T} > 300$ GeV, at least one b-jet, lead. b-jet $p_{\rm T} >$	$200 { m ~GeV}$
Control/Validation Region	Selection	Notes
Multijet-CR	ℓ (trigger, pass or fail offline isolation), $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 30 {\rm GeV}$, one <i>b</i> -jet, RNN τ ID score < 0.01, $E_{\rm T}^{\rm miss} < 50 {\rm GeV}$	Measure lepton fake factor
Top-CR	Pass SR except: $\Delta \phi(\ell, E_{\rm T}^{\rm miss}) > 2.5$, no $S_{\rm T}$ and lead. <i>b</i> -jet $p_{\rm T}$ req.	Derive top correction
SS-CR	Pass SR except: $q(\ell) \times q(\tau_{had}) > 0$, no $\Delta \phi(\ell, E_{T}^{miss})$ and S_{T} req.	Correct fake modelling
VR	Pass SR except: $1.5 < \Delta \phi(\ell, E_{\rm T}^{\rm miss}) < 2.5, 300 \text{ GeV} < S_{\rm T} < 600 \text{ GeV}$	Background modeling
b-tag Z-CR	Pass SR except: 45 GeV $< m_{\rm vis}(\ell, \tau_{\rm had}) < 80$ GeV, $p_T(\ell)/p_T(b\text{-jet}) > 0.8$,	Z+HF normalisation
	and $ \Delta \phi(\ell, \tau_{had}) > 2.4$, no S_{T} req.	factor

- Events triggered by single-electron/muon trigger
- Main backgrounds:
 - Top ($t\bar{t}$ + single top) : estimated through simulation + correction derived in *TopCR*
 - Mis-identified au : estimated through simulation + correction
- Minor backgrounds:
 - Multi-jet : estimated through data-driven method using dedicated Multijet-CR
 - V+jets, Diboson : estimated through simulation

Top background correction

- Found large mis-modelling for Top background in TopCR
- Derive correction as function of S_T (= $p_T^{\tau} + p_T^{\tau} + p_T^{b-jet}$) fitting with linear function

Background modelling validation

• Modelling cross-checked in a dedicated VR; good modelling within pre-fit uncertainties

	Selection		
Signal Region	$ \begin{array}{l} \tau_{\mathrm{had},1} \mbox{ (trigger, med.), } \tau_{\mathrm{had},2} \mbox{ (loose), } q(\tau_{\mathrm{had},1}) \times q(\tau_{\mathrm{had},2}) < 0, \ m_{\mathrm{vis}}(\tau_{\mathrm{had},1},\tau_{\mathrm{had},2}) > 100 \ \mathrm{GeV}, \\ S_{\mathrm{T}} > 300 \ \mathrm{GeV}, \mbox{ at least one } b\text{-jet, lead. } b\text{-jet } p_{\mathrm{T}} > 200 \ \mathrm{GeV} \end{array} $		
Control/Validation Region	Selection	Notes	
DJ-FR CR-1 SS-VR Z+LF VR	$ \begin{array}{l} \mbox{Jet trigger, $\tau_{\rm had,1}$ and $\tau_{\rm had,2}$ pass very losse ID, $q(\tau_{\rm had,1}) \times q(\tau_{\rm had,2}) < 0$ \\ \mbox{Pass SR except: $\tau_{\rm had,2}$ (fail losse) \\ \mbox{Pass SR except: $q(\tau_{\rm had,1}) \times q(\tau_{\rm had,2}) == 1$ \\ \mbox{Pass SR except: 0 b-jets, $\Delta\phi(\tau_{\rm had,1}, \tau_{\rm had,2}) > 0.25$, \\ $m_{\rm vis} < 100$ GeV, $E_{\rm T}^{\rm miss} > 60$ GeV \\ \end{array} $	$\begin{array}{l} \mbox{Measure $\tau_{\rm had}$ fake factor} \\ \mbox{Apply $\tau_{\rm had}$ fake factor} \\ \mbox{Multijet modelling check} \\ \mbox{Z+light jets} \\ \mbox{modelling} \end{array}$	

- Events triggered by single- τ trigger
- Main backgrounds:
 - Top ($t\bar{t}$ + single top) : estimated through simulation + correction from $\tau_{lep}\tau_{had}$ TopCR
 - $\bullet\,$ Multi-jet : estimated through data-driven method using dedicated CR
 - Z+jets : estimated through simulation + normalisation correction
- Minor backgrounds:
 - W+jets, Diboson : estimated through simulation

• Tested other discriminant variables but less performant

$$\mathcal{L}(\mu,\vec{\theta}) = \prod_{i=1} e^{-(\mu s_i + b_i)} \frac{(\mu s_i + b_i)^{n_i}}{n_i!} \cdot \prod_{j=1} G(\theta_j)$$

- Binning optimised to ensure $N_{bkg} > 10$ events in the last S_T bin
- Simultaneous fit combining $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ signal regions
- Performing two types of fit:
 - Background-only fit on data to get post-fit plots
 - Signal+Background fit to extract upper limits

	$\lambda = 1.0$		$\lambda = 1.7$		$\lambda = 2.5$	
Source / m_{LQ}	$0.9 { m TeV}$	$1.6~{\rm TeV}$	$0.9~{\rm TeV}$	$1.6~{\rm TeV}$	$0.9~{\rm TeV}$	$1.6~{\rm TeV}$
Top background modelling	0.11	0.05	0.12	0.08	0.13	0.12
Tau reconstruction/identification	0.06	0.05	0.06	0.05	0.06	0.06
Tau energy scale	0.05	0.02	0.05	0.05	0.06	0.05
Flavor tagging	0.02	0.03	0.02	0.03	0.02	0.03
Signal acceptance	0.01	0.03	0.01	0.03	0.04	0.04
Others	0.03	0.02	0.03	0.03	0.04	0.04
Total	0.16	0.11	0.17	0.15	0.22	0.21

- Impact by several syst. sources evaluated as relative increase on expected limits relative to stat-only expected limits
 - Correlation between nuisance parameter neglected
- Most impacting uncertainty sources:
 - Top bkg model: initial/final state radiation, parton shower and matrix element uncertainties
 - Tau related systematics: reconstruction, identification and energy scale uncertainties

Post-fit plots from Background-only fit

- Signal mainly at higher S_T values
- · Good agreement with the background prediction; no significant excess observed in data

Upper limits on singly-produced LQ

- The observed limits obtained are lower than the expected limit; mostly driven by the high S_T in $\tau_{had} \tau_{had}$ channel
- First ATLAS result for the search of singly-produced LQ in $b\tau\tau$ final state

	m _{LQ} Obs (Exp) lim at 95% CL
$\lambda = 1$	0.89 (1.0) TeV
$\lambda = 1.7$	1.01 (1.22) TeV
$\lambda = 2.5$	1.28 (1.43) TeV

- More stringent limit compared to standalone singly produced LQ limits
- Masses below 1.25 TeV are excluded for all λ values above 0.5

	m _{LQ} Obs (Exp) lim at 95% CL
$\lambda = 1$	1.26 (1.32) TeV
$\lambda = 1.7$	1.30 (1.40) TeV
$\lambda = 2.5$	1.41 (1.52) TeV

• All values on the left side-band with respect to the lines are excluded

- A search for scalar leptoquarks in the b $\tau\tau$ final state have been presented
 - considering both singly and pair scalar leptoquark production
 - scan over several mass and coupling (λ) points
 - considering $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ final states
- No significant excess observed in data \rightarrow setting limits for singly (first results in ATLAS) and singly+pair LQ production
 - for singly-produced LQ, masses below 1 TeV are excluded for all λ values >1.0
 - for singly+pair LQ production, masses below 1.25 TeV are excluded for all λ values > 0.5

Thanks For Your Attention

Backup

Process	Generator		PDF	set	Tune	Normalisation
	ME	\mathbf{PS}	ME	\mathbf{PS}		
$\begin{array}{l} {\rm LQ} \rightarrow b\tau \\ {\rm LQLQ} \rightarrow b\tau b\tau \end{array}$	MadGraph5_aMC@NLO MadGraph5_aMC@NLO	Рутніа 8.244 Рутніа 8.244	NNPDF3.0nnlo NNPDF3.0nnlo	NNPDF2.3L0 NNPDF2.3L0	A14 A14	LO NNLO + NNLL
$t\bar{t}$	Powheg Box v2	Pythia 8	NNPDF3.0nnlo	NNPDF2.3lo	A14	NNLO + NNLL
Single top	Powheg Box v2	Pythia 8	NNPDF3.0nnlo	NNPDF2.3lo	A14	NLO
$Z/\gamma^* \to \tau \tau$	Powheg Box v1	Pythia 8	CT10nlo	CTEQ6L1	AZNLO	NLO
W+jets	Sherpa 2.2.1		NNPDF3.0nnlo		Sherpa	NNLO
Diboson	Sherpa $2.2.1/$ Sherpa $2.2.2$		NNPDF3.0nnlo		Sherpa	NLO

Process	$ au_{ m lep} au_{ m had}$	$\tau_{\rm had}\tau_{\rm had}$
Background	Yields (with post-fit uncertainties)	
$ \begin{array}{c} t\bar{t} \\ \text{Single top} \\ \text{Single Jet} \rightarrow \tau \text{ fake} \\ \text{Two Jet} \rightarrow \tau \text{ fake} \\ Z(\tau\tau) + \text{HF} \\ Z(\tau\tau) + \text{LF} \\ Z(ee,\mu\mu) + \text{jets} \\ Others \end{array} $	$765\pm8265\pm35214\pm79-5.5\pm1.41.6\pm0.31.0\pm0.37.1\pm0.8$	$9.9\pm2.6 \\ 3.9\pm1.0 \\ 3.9\pm1.0 \\ 1.3\pm0.3 \\ 4.7\pm1.1 \\ 0.4\pm0.1 \\ - \\ 1.4\pm0.3$
Total background	1059 ± 51	25.4±4.8
Data	1053	29
Signal	Yields (with pre-fit uncertainties)	
$ \begin{array}{l} {\rm LQ},m_{LQ}{=}0.9~{\rm TeV},\lambda=1\\ {\rm LQ},m_{LQ}{=}1.6~{\rm TeV},\lambda=1\\ {\rm LQ},m_{LQ}{=}0.9~{\rm TeV},\lambda=1.7\\ {\rm LQ},m_{LQ}{=}1.6~{\rm TeV},\lambda=1.7\\ {\rm LQ},m_{LQ}{=}1.6~{\rm TeV},\lambda=2.5\\ {\rm LQ},m_{LQ}{=}1.6~{\rm TeV},\lambda=2.5\\ {\rm LQLQ},m_{LQ}{=}0.9~{\rm TeV}\\ {\rm LQLQ},m_{LQ}{=}1.6~{\rm TeV}\\ \end{array} $	$\begin{array}{c} 13 \pm 1 \\ 0.40 \pm 0.05 \\ 42 \pm 4 \\ 1.7 \pm 0.2 \\ 92 \pm 11 \\ 5.5 \pm 1.0 \\ 74 \pm 5 \\ 0.6 \pm 0.1 \end{array}$	$\begin{array}{c} 14{\pm}1\\ 0.40{\pm}0.06\\ 42{\pm}4\\ 1.7{\pm}0.2\\ 87{\pm}14\\ 5.1{\pm}\ 0.8\\ 93{\pm}14\\ 1.0{\pm}0.1\\ \end{array}$

(a)

(b)