Higgs boson decay to J/ψ via *c*-quark fragmentation

Xiaoze Tan

PITT PACC, University of Pittsburgh Physics School, Harbin Institute of Technology

> Higgs Potential 2022 July 25, 2022

arXiv: 2202.08273, in collaboration with Tao Han, Adam K. Leibovich, Yang Ma (PITT)

Higgs is special

- Higgs provides masses to all other elementary particles.
- Higgs is the only know elementary particle with spin 0.
- A portal to new physics beyond the Standard Model.

Determine the Higgs fermion couplings

Directly test whether the SM Higgs mechanism generates the masses.

- **Results so far:** y_t , y_b , and y_τ are measured to 5σ and agree with SM
- Questions: We actually do not know whether the SM mass-generation mechanism applies just to the heavy particles, or also to the 1st/2nd generations.
- The next target is charm quark.

 \Rightarrow What if the Charm-Higgs coupling is not related to m_c ?

Current status of charm Yukawa coupling testing

Measuring $Hc\bar{c}$ coupling is not easy

- Branching fraction $(H \rightarrow c\bar{c})$: 2.9%
- Large QCD background at hadron colliders
- c-tagging is challenging

Current experimental searching

- κ framework: For $y_c^{\text{SM}} = \sqrt{2}m_c/v$, set $y_c = \kappa_c y_c^{\text{SM}}$
- $pp \rightarrow VH(c\bar{c})$
 - Need c-tagging.
 - LHC Run 2: ATLAS $\kappa_c \le 8.5$ [atlas-conf-2021-021, 2201.11428], CMS $1.1 < |\kappa_c| < 5.5$ [CMS-PAS-HIG-21-008, 2205.05550]
 - Future HL-LHC: $\kappa_c < 3$. [2201.11428, ATL-PHYS-PUB-2021-039]
- Production of $c\bar{c}$ bound states via Higgs decay: $H \rightarrow J/\psi + \gamma$
 - Clean final states $J/\psi \rightarrow \mu^+\mu^-$, avoid c-tagging
 - The rate is too low: $BR \sim 10^{-6}$. [1306.5770, 1407.6695]
 - Result is less sensitive: $\kappa_c < 100$. [1807.00802, 1810.10056]

 $H \xrightarrow{p+q+p_{\gamma}} p+q$

Higgs decay to charmonium in NRQCD

Our idea

 $H \rightarrow c + \bar{c} + J/\psi \text{ (or } \eta_c)$

Color-singlet: Charm quark fragmentation to ${}^3S_1^{[1]}(J/\psi)$ and ${}^1S_0^{[1]}(\eta_c)$

Nonrelativistic QCD framework

$$\Gamma = \sum_{\mathbb{N}} \hat{\Gamma}_{\mathbb{N}}(H \to (Q\bar{Q})[\mathbb{N}] + X) \times \langle \mathscr{O}^{h}[\mathbb{N}] \rangle, \quad \mathrm{d}\hat{\Gamma}_{\mathbb{N}} = \frac{1}{2m_{H}} \frac{|\mathscr{M}|^{2}}{\langle \mathscr{O}^{Q\bar{Q}} \bar{Q} \rangle} \mathrm{d}\Phi_{3}$$

Long distance matrix element (LDME) Related to the wave function at origin

$$\begin{split} \langle \mathscr{O}^{J/\Psi}[{}^{3}S_{1}^{[1]}] \rangle &= \frac{3N_{c}}{2\pi} |R(0)|^{2}, \quad \langle \mathscr{O}^{\eta_{c}}[{}^{1}S_{0}^{[1]}] \rangle = \frac{N_{c}}{2\pi} |R(0)|^{2} \\ \langle \mathscr{O}^{Q\bar{Q}} \rangle &= 6N_{c}, \text{ for } {}^{3}S_{1}^{[1]}, \quad \langle \mathscr{O}^{Q\bar{Q}} \rangle = 2N_{c}, \text{ for } {}^{1}S_{0}^{[1]} \end{split}$$

More corrections from QED and EW sector

Pure QED diagrams: sizable correction to ${}^{3}S_{1}^{[1]}(J/\psi)$ production Single photon fragmentation (SPF) \Rightarrow logarithmic enhancement

Electroweak correction from the *HZZ* **diagrams** One of the *Z* can be on shell \Rightarrow **resonance enhancement**

Charmonium productiuon via color octet states

A key property of NRQCD

- \blacksquare A quarkonium can also be produced through color-octet $Q \, \bar{Q}$ Fork states
- \blacksquare New states involved: ${}^3S_1^{[8]},\, {}^1S_0^{[8]},\, {}^3P_J^{[8]}$, and ${}^1P_1^{[8]}$
- \blacksquare The LDMEs $\langle \mathscr{O}^h[^{2S+1}L_J^{[\mathrm{color}]}]\rangle$ need to be fitted from experimental data

Reference	$\langle \mathscr{O}^{J/\psi}[{}^{1}S_{0}^{[8]}] \rangle$	$\langle \mathscr{O}^{J/\psi}[{}^3S_1^{[8]}] \rangle$	$\langle \mathscr{O}^{J/\psi}[^{3}P_{0}^{[8]}] \rangle / m_{c}^{2}$
G. Bodwin,	$(9.9 \pm 2.2) \times 10^{-2}$	$(1.1 \pm 1.0) \times 10^{-2}$	$(4.89 \pm 4.44) \times 10^{-3}$
K.T. Chao,	$(8.9 \pm 0.98) \times 10^{-2}$	$(3.0 \pm 1.2) \times 10^{-3}$	$(5.6 \pm 2.1) \times 10^{-3}$
Y. Feng,	$(5.66 \pm 4.7) \times 10^{-2}$	$(1.77\pm0.58)\times10^{-3}$	$(3.42\pm1.02)\times10^{-3}$

New diagrams for ${}^{3}S_{1}^{[8]}$

Single gluon fragmentation (SGF) \Rightarrow logarithmic enhancement

Numerical parameters

$$\begin{split} &\alpha = 1/132.5, \quad \alpha_s(2m_c) = 0.235, \quad m_c^{\rm pole} = 1.5 \ {\rm GeV}, \quad m_c(m_H) = 0.694 \ {\rm GeV}, \\ &m_H = 125 \ {\rm GeV}, \quad m_W = 80.419 \ {\rm GeV}, \quad m_Z = 91.188 \ {\rm GeV}, \quad v = 246.22 \ {\rm GeV}, \\ &y_c^{\rm SM} = \frac{\sqrt{2}m_c(m_H)}{v} \approx 3.986 \times 10^{-3}, \end{split}$$

Decay width and branching fraction

	QCD [CS]	QCD+QED [CS]	Full [CS]	Full [CO]	Full [CS+CO]
$\Gamma(H \to c\bar{c} + J/\psi)$ (GeV)	4.8×10^{-8}	5.8×10^{-8}	6.1×10^{-8}	2.2×10^{-8}	8.3×10^{-8}
${ m BR}(H o c \bar{c} + J/\psi)$	1.2×10^{-5}	1.4×10^{-5}	$1.5 imes 10^{-5}$	$5.3 imes 10^{-6}$	2.0×10^{-5}
$\Gamma(H \rightarrow c\bar{c} + \eta_c)$ (GeV)	4.9×10^{-8}	5.1×10^{-8}	6.3×10^{-8}	1.8×10^{-7}	2.4×10^{-7}
$BR(H \rightarrow c\bar{c} + \eta_c)$	$1.2 imes 10^{-5}$	$1.2 imes 10^{-5}$	$1.5 imes 10^{-5}$	$4.5 imes10^{-5}$	$6.0 imes10^{-5}$

Charmonium energy distributions

Color-octet contributions

	${}^{3}S_{1}^{[8]}$	${}^{1}S_{0}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{J}^{[8]}$	Total
$\Gamma(H \to c\bar{c} + J/\psi)$ (GeV)	2.0×10^{-8}	9.8×10^{-10}	-	2.2×10^{-10}	2.2×10^{-8}
$BR(H \rightarrow c\bar{c} + J/\psi)$	5.0×10^{-6}	$2.4 imes 10^{-7}$	-	5.3×10^{-8}	5.3×10^{-6}
$\Gamma(H \rightarrow c\bar{c} + \eta_c)$ (GeV)	$1.8 imes 10^{-7}$	$3.6 imes10^{-11}$	$1.0 imes10^{-10}$	-	$1.8 imes 10^{-7}$
${ m BR}(H o c \bar{c} + \eta_c)$	4.5×10^{-5}	8.9×10^{-9}	2.5×10^{-8}	-	4.5×10^{-5}

Contributions with respect to QCD

$\hat{\Gamma}_{\mathbb{N}}/\hat{\Gamma}_{\mathbb{N}}^{\mathrm{QCD}}$	${}^{1}S_{0}^{[1]}$	${}^{3}S_{1}^{[1]}$	${}^{1}S_{0}^{[8]}$	${}^{3}S_{1}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{0}^{[8]}$	${}^{3}P_{1}^{[8]}$	${}^{3}P_{2}^{[8]}$
QCD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
QED	$1.1 imes 10^{-4}$	0.077	0.0073	1.1×10^{-5}	0.0068	0.0073	0.0073	0.0073
QCD×QED	0.021	0.14	-0.17	0.0012	-0.15	-0.17	-0.17	-0.17
EW	0.24	0.051	0.28	$2.6 imes10^{-4}$	1.4	0.29	0.33	1.5

Some observations

- QCD is dominant in most of the Fock states
- \blacksquare SPF brings sizable QED correction to ${}^3S_1^{[1]}$, but it is forbidden for ${}^1S_0^{[1]}$
- **SGF** makes ${}^{3}S_{1}^{[8]}$ large and considerable
- For ${}^1S_0^{[8]}$ and ${}^3P_J^{[8]}$, charm-quark fragmentation is the only production channel, so that QED and QCD differ by a universal factor
- \blacksquare EW correction can be large since Z is closed to its mass shell

Charmonium transverse momentum distribution

Transverse momentum distribution for the free charm quark

VMD Process?

- $H \rightarrow J/\psi + \gamma$
 - Small decay rate

 ${\rm BR}(H\to J/\psi+\gamma)\simeq 2.8\times 10^{-6}$

Insensitive to $Hc\bar{c}$ coupling $\Rightarrow \kappa_c \le 100$

"Vector meson dominance" (VMD)

• $\gamma^* \rightarrow J/\psi$ dominates over $Hc\bar{c}$ ~ 2 orders of magnitude larger. [1306.5770]

$H \to J/\psi + c \bar{c}$

- Larger decay rate ${\rm BR}(H \to J/\psi + c \bar{c}) \simeq 2 \times 10^{-5}$
- Sensitive to Hcc̄ coupling QCD and QED dominates
- Other diagrams

$$H \to g^* g^* / \gamma^* \gamma^* \to J / \psi + c \bar{c}$$

 $\begin{array}{l} {\rm BR}(g^*g^*)\sim 2.5\times 10^{-6}, \ {\rm BR}(\pmb{\gamma}^*\pmb{\gamma}^*)< 2\times 10^{-7}\\ \bullet \ {\rm No \ need \ to \ worry \ about \ VMD} \end{array}$

Probe the $Hc\bar{c}$ coupling (I)

Use the κ framework $y_c = \kappa_c y_c^{SM}$, BR $\approx \kappa_c^2$ BRSM

Probe the $Hc\bar{c}$ coupling (II)

Some rough analysis:

- \blacksquare Higgs production cross section at LHC $\sigma_H\sim 50~{\rm pb}$
- Expect HL-LHC $L \sim 3 \ {\rm ab}^{-1}$ at ATLAS and CMS and $L \sim 0.3 \ {\rm ab}^{-1}$ at LHCb
- Detection efficiency ${m {arepsilon}}$ for the final state $c ar c + \ell^+ \ell^-$
- BR $(J/\psi \rightarrow \ell^+ \ell^-) \sim 12\%$, BR $(H \rightarrow J/\psi + c\bar{c}) \sim 2 \times 10^{-5}$
- Event number $N = L\sigma_H \ \epsilon \ \text{BR}(H \to c\bar{c} + \ell^+\ell^-) \approx 12 \ \kappa_c^2 \times \frac{L}{ab^{-1}} \times \frac{\epsilon}{10\%}$
- \blacksquare Considering the statistical error only $\delta N \sim \sqrt{N}$ gives

$$\Delta\kappa_c\approx 15\%\times (\frac{L}{\rm ab^{-1}}\times \frac{\varepsilon}{10\%})^{-1/2}$$

Detection efficiency ε :

- Double charm-tagging $(40\%)^2 \sim 16\%$
- Kinematic acceptance 50%
- Assume $\varepsilon \sim 10\%$ $\Rightarrow \Delta \kappa_c \sim 15\%$ per ab^{-1}

Probe the $Hc\bar{c}$ coupling (III)

Background: $pp \rightarrow J/\psi + X$

- Prompt J/ψ production ${\rm BR}(J/\psi \to \mu^+\mu^-) \times \sigma(pp \to J/\psi) \simeq 860 \text{ pb}$
- Estimate 75000 events for $pp \rightarrow J/\psi + c\bar{c}$ a $3~{\rm ab}^{-1}$ HL-LHC $\sim 25~{\rm fb}$ [2012.14161].
- Charm-tagging is needed. Some kinematic cut may help.

Probe the $Hc\bar{c}$ coupling (IV)

Background: $H \rightarrow J/\psi + b\bar{b}$ Color-octet contribution dominates

Charmonium energy distributions

Take the color-octet LDME uncertainty for error estimation

- Charm-tagging is needed.
- More work on LDME fitting is needed.

- \bullet If there were no background: $\Delta\kappa_c\sim 15\%$
- However, background still exist in the real world (e.g. $pp \rightarrow J/\psi + X$):
- Assume 10,000 background events after cuts at the HL-LHC
- \blacksquare Assume the detection efficiency $\mathcal{E}\sim 10\%$
- the signal event number is given by

$$N = L \sigma_H \ \varepsilon \ \text{BR}(H \to c \bar{c} + \ell^+ \ell^-) \approx 12 \ \kappa_c^2 \times \frac{L}{\text{ab}^{-1}} \times \frac{\varepsilon}{20\%}$$

Sensitivity
$$S \simeq N_{simgnal} / \sqrt{N_{background}}$$

 \Rightarrow It is possible to reach 2σ for $\kappa_c \approx 2.4$.

Theoretical uncertainty $\sim 25\%$ and EW contamination $\sim 16\%$ (*HZZ* 3% and $H \rightarrow g^* g^* / \gamma^* \gamma^*$ 13%)

Conclusion

- Higgs is special and important
 - Testing the SM mass generation mechanism helps BSM physics searches.
 - The Yukawa couplings of the 3rd generation fermions are well measured.
 ⇒ Next target is Charm quark.
- Current determination of Charm-Higgs coupling
 - $pp \rightarrow VH(c\bar{c})$, *c*-tagging is challenging. ATLAS: $\kappa_c < 8.5$, CMS: $1.1 < |\kappa_c| < 5.5$, future 3 ab⁻¹ HL-LHC: $\kappa_c < 3$
 - $H \rightarrow J/\psi + \gamma$, no need for *c*-tagging but insensitive to κ_c ATLAS: $\kappa_c < 100$
- $H \rightarrow J/\psi + c \bar{c}$ is another possible approach
 - The rate is larger due to the fragmentation enhancements
 - There are both color-singlet and color-octet contributions
 - The QED and EW corrections can be sizable, so need to be included
 - \blacksquare The SM prediction gives $BR \sim 2 \times 10^{-5}$
 - For possible 3 ${\rm ab}^{-1}$ HL-LHC, with a 10% final state detection rate $\Delta\kappa_c\sim 10\%$
 - Assume 10,000 background events $\Rightarrow 2\sigma$ for $\kappa_c \approx 2.4$
- More work in progress
 - Background analysis, detector/systematic effects
 - Better LDMEs, Higher order calculations/resummation

Backups

The SM Yukawa coupling at the scale of the Higgs boson mass is

$$y_c^{\rm SM} = \frac{\sqrt{2}m_c(m_H)}{v} \approx 3.986 \times 10^{-3},$$

which gives a branching fraction $BR(H \rightarrow c\bar{c}) = 2.9\%$.

Table: Color factors of different Feynman diagrams for the color-singlet (CS) and color-octet (CO) short-distance coefficients. The pure QCD contribution, pure QED contribution and the QCD/QED interference are represented as QCD, QED, and QCD \times QED, respectively.

		Fig. 1		Fig. 2	Fig. 4
	QCD	QED	$QCD \times QED$	QED	QCD
CS	16/9	1	4/3	9	-
CO	2/9	8	-4/3	-	2

Table: Color factors of the HZZ diagrams for the color-singlet (CS) and color-octet (CO) short-distance coefficients.

	Fig. 3(a)	Fig. 3(b)
CS	9	1
CO	-	8