

Primordial Black Holes from An Electroweak Phase Transition

Ke-Pan Xie (谢柯盼) University of Nebraska-Lincoln 2022.7.27 @Higgs potential 2022 (online)

With Peisi Huang, Phys.Rev.D 105 (2022) 11, 115033 [arXiv:2201.07243]

The Higgs potential

Patterns of the electroweak phase transition

Black holes from 1st-order phase transitions

Baker *et al*, 2105.07481; Kawana and **KPX**, 2106.00111; Baker *et al*, 2110.00005; Marfatia *et al*, 2112.14588; Huang and **KPX**, 2201.07243;

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

Extending the scalar sector

The 1st-order EWPT

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

Particle trapping in a phase transition

Particle trapping in a phase transition

Fermions trapped in old vacuum

What happens for the trapped fermions?

What happens for the trapped fermions?

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

The Fermi-ball profile

Evolution of Fermi-balls

Different fates: [Huang and KPX, 2201.07243]

From Fermi-balls to black holes

From Fermi-balls to black holes

Fermi-balls cool down via black body radiation^[Witten, PRD1984]

From Fermi-balls to black holes

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

What can primordial black holes do?

Depending on mass:

A natural dark matter candidate;

Seeds of the supermassive black holes;

Explaining LIGO/Virgo observations;

Origin of the matter-antimatter asymmetry;

 $M_{\rm PBH} \propto Q_{\rm FB} \propto \eta_{\chi}$

This talk: can be from a 1st-order electroweak phase transition!

Towards a complete model

Origin of the χ -asymmetry

$$\mathcal{L} = \sum_{i=1}^{2} \left(\frac{1}{2} \partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i} - \frac{1}{2} M_{i}^{2} \phi_{i}^{2} \right) + \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - M_{\psi} \right) \psi - \sum_{i=1}^{2} \left(\lambda_{i} \phi_{i} \bar{\chi} \psi + \text{h.c.} \right).$$

$$\overbrace{\psi}^{\phi_{1}} \cdots \overbrace{\psi}^{\phi_{2}} \overbrace{\psi}^{\chi} \cdots \overbrace{\psi}^{\psi} \cdots \overbrace{\psi}^{\psi} \cdots \overbrace{\psi}^{\chi} \cdots \overbrace{\psi}^{\psi} \cdots \overbrace{\psi} \cdots \overbrace{\psi}^{\psi} \cdots \overbrace{\psi}^{\psi$$

Towards a complete model

Origin of the χ -asymmetry

Diluted by $\psi \rightarrow \ell H/\bar{\ell}H^*$ (early matter domination era)

$$\Delta_{\psi} = 6.24 \times 10^3 \times \left(\frac{1.0}{|\lambda_2|}\right)^2 \left(\frac{g_*}{100}\right)^{1/4} \left(\frac{M_2}{3.5 \times 10^{12} \text{ GeV}}\right)^2 \left(\frac{10^{10} \text{ GeV}}{M_1}\right)^2 \left(\frac{M_{\psi}}{10^3 \text{ GeV}}\right)^{1/2} \left(\frac{10^{-12}}{\lambda_{\psi}}\right) \left(\frac{\eta_{\chi}}{10^{-8}}\right)^{1/4} \left(\frac{M_2}{10^{-8}}\right)^{1/4} \left(\frac{M_2}{10^{-8}}\right)^{1/4} \left(\frac{M_2}{M_1}\right)^{1/4} \left(\frac{M_2}{M_1}\right)^{1$$

Phenomenology: gravitational waves

Phenomenology: collider

Conclusion

First-order phase transition (FOPT)

Ke-Pan Xie, University of Nebraska-Lincoln

Backup: the 1st-order electroweak phase transition

Backup: volume of old vacuum remnants

A detailed study see ^[Lu, Kawana and KPX, 2202.03439]; a simple model here

Backup: stability condition

$$M_{\rm FB} = Q_{\rm FB} \left(12\pi^2 U_0 \right)^{1/4}, \quad R_{\rm FB} = Q_{\rm FB}^{1/3} \left[\frac{3}{16} \left(\frac{3}{2\pi} \right)^{2/3} \frac{1}{U_0} \right]^{1/4}$$

Mass density of a single Fermi-ball

The stability conditions

Backup: the Fermi-ball profile

