Investigating Higgs self-interaction through di-Higgs plus jet production

Motivation

- X The Higgs self-couplings is crucial to several fundamental questions: the nature of the Higgs boson, electroweak symmetry breaking and electroweak baryogenesis etc.
- X This measurement remains challenging: For trilinear Higgs selfcoupling, at the LHC, the 95% confidence interval is $-1.5 < \kappa_{\lambda} < 6.7$ (arXiv:2112.11876 [hep-ex]).

Phenomenology of Higgs pair plus jet production at hadron

collider

Higgs pair production

 $\mathcal{M} \simeq \frac{\alpha_s}{12\pi v} \left(\frac{\kappa_\lambda \lambda_{\text{SM}}}{s - m_h^2} - \frac{1}{v} \right) \rightarrow \frac{\alpha_s}{12\pi v^2} (\kappa_\lambda - 1) \stackrel{\text{SM}}{=} 0$ $X \text{ Top mass effect } m_{hh} \approx 2m_t.$ $X \text{ Large } m_{hh} \text{ region: dominated by box diagram.}$

X Threshold $m_{hh} \approx 2m_h$:

X The m_{hh} region between 250 GeV and 400 GeV is the most sensitive to κ_{λ} .

X Current experimental cuts, such as $p_T^h > 150 \text{ GeV}$, usually excludes this region.

Why additional jet?

X No need of p_T^h cuts: the large of p_T cut over the additional jet could largely suppress the SM background in small m_{hh} region.

X When the jet p_T is large, the m_{hh} tend to be small.

X Drawbacks: the total cross section would be much smaller

Simulations

Parton-level analysis

X Signal: $pp \rightarrow hh + jet \rightarrow b\bar{b}\gamma\gamma + jet$

 $\begin{array}{c} \textbf{X} \quad \textbf{Background} \\ pp \rightarrow t\bar{t} \ (h \rightarrow \gamma \gamma) \\ pp \rightarrow t\bar{t} \ (h \rightarrow \gamma \gamma) \ j \\ pp \rightarrow b\bar{b}\gamma\gamma j \\ pp \rightarrow b\bar{b}\gamma j j \\ pp \rightarrow b\bar{b}\gamma\gamma j \\ \textbf{X} \quad \textbf{Pre-selection cuts:} \\ \Delta R_{j\gamma,jj,\gamma\gamma} > 0.3, \ |\eta_{b,\gamma}| < 3, \ |\eta_i| < 5 \end{array}$

 $p_T^{\gamma} > 10 \text{GeV}, \quad p_T^j > 20 \text{GeV}, \quad p_T^{leading-jet} > 80 \text{GeV}$ $75 \text{GeV} < m_{bb} < 175 \text{GeV}, \quad 100 \text{GeV} < m_{\gamma\gamma} < 150 \text{GeV}$

X Kinematical cuts $\Delta R_{bb,\gamma\gamma,b\gamma} < 0.4, \ p_T^b > 30 \text{GeV}, \ p_T^{\gamma} > 30 \text{GeV}$ $|\eta_b| < 2.5, \ |\eta_\gamma| < 2.5, \ p_T^{leading-jet} > 150 \text{GeV}$ $120 \text{GeV} < m_{\gamma\gamma} < 130 \text{GeV}, \ 80 \text{GeV} < m_{bb} < 160 \text{GeV}$ X Smearing effect and mis-tagging rate $\sigma(m_{\gamma\gamma}) = 1.52 \text{GeV}, \quad \sigma(m_{bb}) = 12.6 \text{GeV}$ $\epsilon_{\gamma \to \gamma} = 0.863 - 1.07 \cdot e^{-p_{T,\gamma}/34.8 \text{GeV}}$ $\epsilon_{j \to \gamma} = \begin{cases} 5.3 \times 10^{-4} \exp\left(-6.5 \left(\frac{p_{T,j}}{60.4 \,\text{GeV}} - 1\right)^2\right), \ p_{T,j} < 65 \,\text{GeV} \\ 0.88 \times 10^{-4} \left[\exp\left(-\frac{p_{T,j}}{943 \,\text{GeV}}\right) + \frac{248 \,\text{GeV}}{p_{T,j}}\right], \ p_{T,j} >= 65 \,\text{GeV} \end{cases}$ $\epsilon_b = 0.7, \epsilon_{c \to b} = 0.15, \epsilon_{light-jet \to b} = 0.003$ PHYSICAL REVIEW D 97, 113004 (2018)

Parton-level analysis: the significance distributions.

8

 X Significance distributions: likelihood ratio for each m_{hh} bin.
X Only give better sensitivity in small m_{hh} region.

Detector-level analysis

X All jets were reconstructed with anti- k_T algorithm with the parameter R = 0.4

X Detector parameters: $\epsilon_{\gamma} = 0.9, \epsilon_b = 0.8, \epsilon_{c \to b} = 0.1, \epsilon_{light-jet \to b} = 0.01, \epsilon_{j \to \gamma} = 0.0005$

X Exactly two b-tagged jets, two photons and at least one additional jet with the following Kinematical cuts:

 $p_T > 30 \text{GeV}, |\eta_j| < 2.5, |\eta_\gamma| < 1.37 \text{ or } 1.52 < |\eta_\gamma| < 2.5$

 $122 \text{GeV} < m_{\gamma\gamma} < 128 \text{GeV}, \quad 95 \text{GeV} < m_{bb} < 155 \text{GeV},$

 $\begin{array}{c} p_{T}^{leading-jet} > 150 \text{GeV} \\ \textbf{X} \quad \text{Top rejection (the largest background is tth):} \\ \chi^{2} = \min \left\{ \frac{(m_{W} - m_{i_{1}i_{2}})^{2}}{\sigma_{W}^{2}} + \frac{(m_{t} - m_{i_{1}i_{2}j_{1}})^{2}}{\sigma_{t}^{2}} + \frac{(m_{W} - m_{i_{3}i_{4}})^{2}}{\sigma_{W}^{2}} + \frac{(m_{t} - m_{i_{3}i_{4}j_{2}})^{2}}{\sigma_{t}^{2}} \right\} \end{array}$

 $\chi^2 > 6$ and lepton veto

Results: m_{hh} distributions of signal and background events

10

- X Small m_{hh} region is more sensitive to κ_{λ} .
- **X** We also analyzed our events with the current experimental cuts: $p_T^{\gamma\gamma} > 150 \text{GeV}, p_T^{b\bar{b}} > 150 \text{GeV}.$ Results shows that 23% of the signal events which passes our cuts can not pass the current experimental cuts. And for $m_{hh} < 400 \ GeV$ region, this number is 67%.

Results: the significance distributions

X For small m_{hh} region, our channel could give comparable significance, and it is largely independent to $pp \rightarrow hh + X$ channel.

(2018)

11

Results: the confidence intervals

X The 2σ allowed interval is
0.51 < κ_λ < 1.65
X A combined analysis with Higgs pair production could give a better result.

