Electroweak Phase Transition in 2HDM

Collider and GW Complementarity

Yongcheng Wu Nanjing Normal University @Higgs Potential 2022

D. Goncalves, A. Kaladharan, Y. Wu: 2108.05356, 2206.08381

Introduction

- Electroweak Phase Transition
 - Electroweak Symmetry Breaking, Higgs Potential
 - Electroweak Baryogenesis
 - Possible GW sources
- Preferred Parameter Space in BSM
 - Prospects from Collider Experiments
 - Possible GW detections

Two Higgs Doublet Model (2HDM)

Two Doublet

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{v_1 + \phi_1^0 + i\eta_1}{\sqrt{2}} \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{v_2 + \phi_2^0 + i\eta_2}{\sqrt{2}} \end{pmatrix}$$

- Five Mass Eigenstates
 - h, H, A, H^{\pm}
- CP Conserving, soft Z2 breaking

 $\tan \beta, \ \cos(\beta - \alpha), \ m_{12}^2, \ v, \ m_h, \ m_H, \ m_A, \ m_{H^{\pm}}$

• Type-I/Type-II Yukawa Couplings

Yukawa Coupling	Туре-І	Type-II
Top quark	Φ_2	Φ_2
Bottom quark	Φ_2	Φ_1

July 27, 2022

vcwu@njnu.edu.cn

- Effective Potential
 - $V_{eff} = V_0 + V_{CW} + V_{CT} + V_T$
 - V_0 : Tree level potential
 - V_{CW}/V_{CT}: Coleman-Weinberg potential and Counter Terms

Effective Potential at Finite T

- V_T: Thermal corrections
- Parameter relevant for EWPT:
 - Strength:

•
$$\xi_c \equiv \frac{v_c}{T_c}$$

Signal to Noise Ratio

$$SNR = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left[\frac{h^2 \Omega_{GW}(f)}{h^2 \Omega_{Sens}(f)}\right]^2}$$

Scan Setup

- Ranges for Parameters
 - $t_{\beta} \in (0.8, 25), \cos(\beta \alpha) \in (-0.3, 0.3)$
 - $m_{H,A,H^{\pm}} \in (150, 1500) \, {
 m GeV}$
 - $m_{12}^2 \in (10^{-3}, 10^5) \,\mathrm{GeV^2}$
- Constraints Considered
 - Theoretical Constraints:
 - Perturbative unitarity
 - Boundness from below
 - Stability
 - Electroweak Precision (S/T/U)
 - Flavor Constraints
 - Higgs signal strength, Heavy scalar searches

ScannerS

HiggsBounds/HiggsSignals

July 27, 2022

6

Shape of the Potential

- Four Branches
 - Electroweak Precision Measurement

•
$$\Delta m_H = m_H - m_{H^{\pm}}, \ \Delta m_A = m_A - m_{H^{\pm}}$$

 $m_H^2 \gtrsim \frac{m_{12}^2}{s_\beta c_\beta}$

• Top: $m_H \approx m_{H^\pm} < m_A$ $A \rightarrow ZH$ $A/H \rightarrow t t$

 η

- Left: $m_H < m_{H^{\pm}} \approx m_A$ $A \rightarrow ZH$ $A/H \rightarrow t t$ $H^{\pm} \rightarrow t b$
- Bottom: $m_H \approx m_{H^{\pm}} > m_A$ $H \rightarrow ZA$ $A/H \rightarrow t t$ $H^{\pm} \rightarrow t b$
- Right: $m_H > m_{H^{\pm}} \approx m_A$

- Spectrums
 - $A \rightarrow ZH$, $H \rightarrow ZA$
 - Fermionic Channels:
 - $H/A \rightarrow t t$
 - $H^{\pm} \rightarrow t \ b$
- Triple Scalar Couplings
 - Resonant/non-resonant hh

Non-Resonance

Resonance

- Triple Scalar Couplings
 - Resonance/non-resonance hh

- Spectrums
 - $A \rightarrow ZH$, $H \rightarrow ZA$
 - Fermionic Channels:
 - $H/A \rightarrow t t$
 - $H^{\pm} \rightarrow t b$

 $gg \rightarrow A \rightarrow ZH$

Spectrums

• $A \rightarrow ZH$, $H \rightarrow ZA$

bb/WW Scaling from LHC 2011.05639, 1911.03781

Summary

• EWPT prefer particular parameter space

• Collider Searches

Thanks!

2D Distributions

Upper limits on the Cross section

