Higgs production and decay: theory

Li Lin Yang
 Zhejiang University

The Higgs boson

- Completes the standard model
> "Ghost" or "God" filling the vacuum of our universe
- Electroweak symmetry breaking \rightarrow masses of weak gauge bosons
> Yukawa couplings \rightarrow masses of fundamental matter particles

What's beyond the SM?

We know that there has to be something new at higher energies beyond the SM

What's beyond the SM?

Current LHC direct searches have pushed the scale of new physics very high

Supplementary information from precision measurements important!

The need for precision!

Physics beyond the SM may reveal itself in various couplings of the Higgs boson

Typical deviations from the $\mathrm{SM} \sim\left(\frac{v}{\Lambda}\right)^{p}$

Requires high-precision measurements!

Latest from CMS (July 4th)

The future

The future

Much higher precision can be achieved at the HL-LHC

The future

Future Higgs factories can provide even better accuracies

The need for theoretical precision!

The upcoming experimental accuracies are demanding much better theoretical precision for various scattering processes

Estimated theoretical uncertainties that can be achieved during the HL-LHC run
(reduced by a factor of $2 \sim 3$ w.r.t. current values)

Decay of the Higgs boson

Most frequent; relevant for $H b \bar{b}$; but not easy to detect

Single Higgs production at the LHC

Single Higgs production at the LHC

Double Higgs production at the LHC

Higgs bosons can also be produced in pairs

Double Higgs production at the LHC

Higgs bosons can also be produced in pairs

We are not there yet.

Higgs boson pair production is extremely difficult to detect

We'll need HL-LHC...

Single Higgs from gluon-fusion

Fully differential cross sections at $\mathrm{N}^{3} \mathrm{LO}$

Chen et al.: 2102.07607

VH associated production (Higgs-strahlung)

Important for measuring gauge and Yukawa couplings

Electroweak symmetry breaking

Gluon-fusion channel unique for ZH -production
Formally higher order, but enhanced by gluon luminosity at the LHC

Theoretical uncertainties for ZH-production

Theoretical uncertainties dominated by missing higher order corrections

Table 10: Cross-section for the process $p p \rightarrow Z H$. The predictions for the $g g \rightarrow Z H$ channel are computed at LO , rescaled by the NLO K-factor in the $m_{t} \rightarrow \infty$ limit, and supplemented by the $\mathrm{NLL}_{\text {soft }}$ resummation. The photon contribution is omitted. Results are given for a Higgs boson mass $m_{H}=$ 125.09 GeV .

1902.00134	$\sqrt{s}[\mathrm{TeV}]$	$\sigma_{\text {NNLO QCD } \otimes \text { NLO EW }}[\mathrm{pb}]$	$\Delta_{\text {scale }}$ [\%]	$\Delta_{\mathrm{PDF} \oplus \alpha_{\mathrm{s}}}[\%]$
	13	0.880	${ }_{-2.68}^{+3.50}$	1.65
	14	0.981	${ }^{-}+2.91$	1.90
	27	2.463	${ }^{+5.42}$	2.24
Mainly come from $\mathrm{gg} \rightarrow \mathrm{ZH}$				

$\mathrm{gg} \rightarrow$ ZH

Loop induced
LO \rightarrow formally start at α_{s}^{2}

(a)

(b)

(f)

(c)

(g)

(d)

NLO difficult: two-loop four-point amplitude with 5 physical scales

Heavy top EFT not good for distributions...

Approximations with small-mass expansion

4 scales: s, t, m_{t}, m_{H}

5 scales: $s, t, m_{t}, m_{H}, m_{Z}$

Difficult to solve: integral reduction? master integrals?

An approximation: $m_{H}^{2}, m_{Z}^{2} \ll|s|,|t|, m_{t}^{2}$
Valid for rather generic physical kinematics

Small-mass expansion

Xu, LLY: 1810.12002
Wang, Wang, Xu, Xu, LLY: 2010.15649
For HH: $\quad F_{H H}\left(s, t_{1}, m_{t}^{2}, m_{H}^{2}\right)=\sum_{n=0}^{\infty}\left(m_{H}^{2}\right)^{n} F_{H H}^{(n)}\left(s, t_{1}, m_{t}^{2}\right) \longrightarrow$ Same master integrals!

For ZH: $\quad F_{Z H}\left(s, t_{1}, m_{t}^{2}, m_{H}^{2}, m_{Z}^{2}\right)=\sum_{n} \sum_{i}\left(m_{H}^{2}\right)^{i}\left(m_{Z}^{2}\right)^{n-i} F_{Z H}^{(n, i)}\left(s, t_{1}, m_{t}^{2}\right) \quad$ Wang, Xu, Xu, LLY: 2107.08206

Small-mass expansion

For HH: $\quad F_{H H}\left(s, t_{1}, m_{t}^{2}, m_{H}^{2}\right)=\sum_{n=0}^{\infty}\left(m_{H}^{2}\right)^{n} F_{H H}^{(n)}\left(s, t_{1}, m_{t}^{2}\right) \longrightarrow$
Same master integrals!
We know how to solve...
For ZH: $\quad F_{Z H}\left(s, t_{1}, m_{t}^{2}, m_{H}^{2}, m_{Z}^{2}\right)=\sum_{n} \sum_{i}\left(m_{H}^{2}\right)^{i}\left(m_{Z}^{2}\right)^{n-i} F_{Z H}^{(n, i)}\left(s, t_{1}, m_{t}^{2}\right) \quad$ Wang, Xu, Xu, LLY: 2107.08206 \downarrow
A slight complication: polarization sum of the Z boson $-g_{\mu \nu}+\frac{p_{\mu} p_{\nu}}{m_{\bar{Z}}^{2}}$

Consistent power-counting required

Numeric results for $\mathrm{gg} \rightarrow \mathrm{HH}$

UV and IR finite part of the two-loop amplitude

Interpolated from hhgrid (sector decomposition)
Heinrich et al. 7 GPGPU hours per phase space point

Small-mass expansion
10 CPU seconds per phase space point

Numeric results for $\mathrm{gg} \rightarrow \mathrm{HH}$

Numeric results for $\mathrm{gg} \rightarrow$ ZH

NLO predictions for both total and differential cross sections including top quark mass dependence (first time ever)

$$
\sigma_{p p \rightarrow Z H}=882.9_{-2.5 \%}^{+3.5 \%} \mathrm{fb}
$$

Non-trivial kinematic dependence: not an overall K-factor

Top-quark pair associated production

Probing the top-quark Yukawa coupling

Broggio, Ferroglia, Pecjak, LLY: 1601.00049
Ju, LLY: 1904.08744
See also 1610.07922 and references therein

Residue scale uncertainty $\sim 8 \%$

Top-quark pair associated production

Probing the top-quark Yukawa coupling

Broggio, Ferroglia, Pecjak, LLY: 1601.00049 Ju, LLY: 1904.08744

See also 1610.07922 and references therein

(a)

(b)

Residue scale uncertainty $\sim 8 \%$

NNLO QCD extremely difficult
(two-loop integrals with 7 physical scales)

Two-loop IR divergences for tth

The full two-loop amplitude is too difficult...

- Needs to be exactly cancelled against real corrections
- Provide an independent check for future (most likely numeric) calculations of the full amplitude

The universal structure of two-loop IR divergences

The IR divergences of any two-loop amplitude in gauge theories can be determined given the corresponding one-loop amplitudes (up to order ϵ^{1} in DREG) and a universal anomalous dimension matrix

$$
\begin{aligned}
\boldsymbol{\Gamma}(\{\underline{p}\},\{\underline{m}\}, \mu)= & \sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \\
& -\sum_{(I, J)} \frac{\boldsymbol{T}_{I} \cdot \boldsymbol{T}_{J}}{2} \gamma_{\mathrm{cusp}}\left(\beta_{I J}, \alpha_{s}\right)+\sum_{I} \gamma^{I}\left(\alpha_{s}\right)+\sum_{I, j} \boldsymbol{T}_{I} \cdot \boldsymbol{T}_{j} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{m_{I} \mu}{-s_{I j}} \\
& +\sum_{(I, J, K)} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{K}^{c} F_{1}\left(\beta_{I J}, \beta_{J K}, \beta_{K I}\right) \\
& +\sum_{(I, J)} \sum_{k} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{k}^{c} f_{2}\left(\beta_{I J}, \ln \frac{-\sigma_{J k} v_{J} \cdot p_{k}}{-\sigma_{I k} v_{I} \cdot p_{k}}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right) .
\end{aligned}
$$

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

A fact from soft-collinear factorization

One-loop integrals to higher orders in ϵ

The one-loop integrals up to the finite term have been obtained long long ago
't Hooft, Veltman (1979)
However, the problem of higher order terms in ϵ has not been generically solved!

One-loop integrals to higher orders in ϵ

The one-loop integrals up to the finite term have been obtained long long ago
't Hooft, Veltman (1979)
However, the problem of higher order terms in ϵ has not been generically solved!

Fortunately, it is known that all one-loop integral families admit canonical bases

Bourjaily, Gardi, McLeod, Vergu: 1912.11067
Chen, Jiang, Xu, LLY: 2008.03045
Chen, Jiang, Ma, Xu, LLY: 2202.08127
ϵ-form differential equations:

$$
\begin{aligned}
& d \vec{f}(z, \epsilon)=\epsilon d A(z) \vec{f}(z, \epsilon) \\
& \vec{f}(z, \epsilon)=\sum_{n} \epsilon^{n} \overrightarrow{f^{(n)}(z)}
\end{aligned}
$$

Generic result of the one-loop alphabet

Solutions consist of iterated integrals

$$
\vec{f}^{(n)}(z) \supset \int_{z_{0}}^{z} d \log \left(\alpha_{n}\left(z_{n}\right)\right) \cdots \int_{z_{0}}^{z_{3}} d \log \left(\alpha_{2}\left(z_{2}\right)\right) \int_{z_{0}}^{z_{2}} d \log \left(\alpha_{1}\left(z_{1}\right)\right)
$$

Lots of information about the solutions is contained in the "alphabet"

We managed to obtain generic result of the alphabet using cut integrals in the Baikov representation and cleverly-chosen integration contours

Applied to the ttH case

4 topologies, 6 independent dimensionless
Topology A
Topology B kinematic variables

$$
x_{i j}=\frac{s_{i j}}{m_{t}^{2}}, \quad x_{h}=\frac{m_{H}^{2}}{m_{t}^{2}}
$$

Topology C

Topology D

Applied to the tth case

4 topologies, 6 independent dimensionless kinematic variables

$$
x_{i j}=\frac{s_{i j}}{m_{t}^{2}}, \quad x_{h}=\frac{m_{H}^{2}}{m_{t}^{2}}
$$

The letters are sometimes rather complicated!

$$
\text { e.g.: } \frac{C_{5}-\sqrt{-\mathscr{K}_{5} \mathscr{K}_{3}}}{C_{5}+\sqrt{-\mathscr{K}_{5} \mathscr{K}_{3}}}
$$

$$
\begin{aligned}
C_{5}= & G\left(-p_{3}, p_{1}+p_{2},-p_{4} ;-p_{3}, p_{1}+p_{2},-p_{2}\right) \\
= & \frac{1}{8}\left(x_{45} x_{12} x_{h}-x_{12}^{2} x_{h}-2 x_{13} x_{12} x_{h}+x_{12} x_{h}-x_{13} x_{12}^{2}+x_{24} x_{12}^{2}+2 x_{13} x_{12}\right. \\
& +x_{12}-2 x_{24} x_{12}+x_{13} x_{35} x_{12}+x_{13} x_{45} x_{12}-2 x_{24} x_{45} x_{12}+x_{35} x_{45} x_{12} \\
& +x_{24} x_{45}^{2}-x_{35} x_{45}^{2}-x_{13} x_{45}-2 x_{24} x_{45}+x_{13} x_{35} x_{45}+x_{13}-x_{13} x_{35} \\
& \left.+x_{35} x_{45}+x_{45}+x_{24}-2 x_{45} x_{12}-1\right), \\
\mathcal{K}_{3}= & G\left(-p_{3}, p_{1}+p_{2}\right)=-\frac{1}{4}\left(x_{12}^{2}+x_{45}^{2}-2 x_{45} x_{12}-2 x_{12}-2 x_{45}+1\right),
\end{aligned}
$$

Topology A

Topology B

Topology D
$\mathcal{K}_{5}=G\left(-p_{3}, p_{1}, p_{2},-p_{4}\right)$
$=\frac{1}{16}\left(x_{12}^{2} x_{h}^{2}-2 x_{13} x_{12}^{2} x_{h}-2 x_{24} x_{12}^{2} x_{h}+2 x_{13} x_{12} x_{h}-4 x_{13} x_{24} x_{12} x_{h}+2 x_{24} x_{12} x_{h}\right.$
$+2 x_{12} x_{35} x_{13} x_{h}-2 x_{12} x_{h}+2 x_{12} x_{24} x_{45} x_{h}-2 x_{12} x_{35} x_{45} x_{h}+x_{12}^{2} x_{13}^{2}+x_{12}^{2} x_{24}^{2}$
$-2 x_{13} x_{24} x_{12}^{2}-2 x_{13}^{2} x_{12}-2 x_{24}^{2} x_{12}+2 x_{13} x_{12}+4 x_{13} x_{24} x_{12}-2 x_{13}^{2} x_{35} x_{12}$
$-2 x_{12} x_{45} x_{24}^{2}+2 x_{12} x_{13} x_{35} x_{24}-4 x_{12} x_{45} x_{24}+2 x_{12} x_{13} x_{45} x_{24}-4 x_{12} x_{13} x_{35}$
$+x_{35}^{2} x_{13}^{2}+x_{13}^{2}+2 x_{12} x_{35} x_{45} x_{13}-2 x_{13}+x_{24}^{2} x_{45}^{2}+x_{35}^{2} x_{45}^{2}+2 x_{12} x_{24} x_{35} x_{45}$
$-2 x_{35} x_{13}^{2}+2 x_{24} x_{13}-2 x_{24} x_{35} x_{13}+2 x_{35} x_{13}-2 x_{24} x_{35} x_{45}^{2}-2 x_{24}-2 x_{24}^{2} x_{45}$
$-2 x_{13} x_{45} x_{35}^{2}+2 x_{13} x_{45} x_{35}+2 x_{13} x_{24} x_{45} x_{35}-2 x_{13} x_{24} x_{45}+2 x_{24} x_{45}$
$\left.+2 x_{24} x_{35} x_{45}-2 x_{35} x_{45}+2 x_{24} x_{12}+x_{24}^{2}+1\right)$,
Easily obtained using our method

Results for the two-loop IR poles

The square amplitudes can be decomposed into color coefficients

$$
\begin{aligned}
2 \operatorname{Re}\left\langle\mathcal{M}_{q}^{(0)} \mid \mathcal{M}_{q}^{(2)}\right\rangle= & 2\left(N^{2}-1\right)\left(N^{2} A^{q}+B^{q}+\frac{1}{N^{2}} C^{q}+N n_{l} D_{l}^{q}+N n_{h} D_{h}^{q}\right. \\
& \left.+\frac{n_{l}}{N} E_{l}^{q}+\frac{n_{h}}{N} E_{h}^{q}+n_{l}^{2} F_{l}^{q}+n_{l} n_{h} F_{l h}^{q}+n_{h}^{2} F_{h}^{q}\right) \\
2 \operatorname{Re}\left\langle\mathcal{M}_{g}^{(0)} \mid \mathcal{M}_{g}^{(2)}\right\rangle= & \left(N^{2}-1\right)\left(N^{3} A^{g}+N B^{g}+\frac{1}{N} C^{g}+\frac{1}{N^{3}} D^{g}\right. \\
& +N^{2} n_{l} E_{l}^{g}+N^{2} n_{h} E_{h}^{g}+n_{l} F_{l}^{g}+n_{h} F_{h}^{g}+\frac{n_{l}}{N^{2}} G_{l}^{g}+\frac{n_{h}}{N^{2}} G_{h}^{g} \\
& \left.+N n_{l}^{2} H_{l}^{g}+N n_{l} n_{h} H_{l h}^{g}+N n_{h}^{2} H_{h}^{g}+\frac{n_{l}^{2}}{N} I_{l}^{g}+\frac{n_{l} n_{h}}{N} I_{l h}^{g}+\frac{n_{h}^{2}}{N} I_{h}^{g}\right)
\end{aligned}
$$

Results at a sample phase-space point

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}
A^{g}	17.37022326	6.277797530	-162.1830217	559.8062598
B^{g}	-32.49510001	-34.75486260	-624.1343773	3901.332369
C^{g}		-9.463444735	-54.41556200	-497.5350517
D^{g}			143.6321997	-578.4857199
E_{l}^{g}		-20.26526047	46.54471184	-10.69967085
E_{h}^{g}			-24.23013938	79.68650479
F_{l}^{g}		37.91095001	-74.94866603	71.66904977
F_{h}^{g}			43.70151160	-132.3384924
G_{l}^{g}			4.731722368	85.25318119
G_{h}^{g}				6.363526190
H_{l}^{g}			3.860049613	-10.52987601
$H_{l h}^{g}$				8.076713126
H_{h}^{g}				
I_{l}^{g}			-7.221133335	19.49234494
$I_{l h}^{g}$				-14.56717053
I_{h}^{g}				
A^{q}	2.390051823	15.03938540	0.597121534	-34.95784899
B^{q}	-4.780103646	-22.69017086	49.54607207	106.0851578
C^{q}	2.390051823	7.650785464	-186.5751188	-21.39439443
D_{l}^{q}		-2.390051823	0.308675876	-6.605875838
D_{h}^{q}			6.244349191	4.860387981
E_{l}^{q}		2.390051823	1.610219156	77.52356965
E_{h}^{q}			-6.244349191	19.76269918
F_{l}^{q}				
$F_{l h}^{q}$				
F_{h}^{q}				

Table 1. IR poles decomposed as color coefficients for the phase-space point $x_{12}=10, x_{13}=$ $-1339 / 920, x_{14}=-2269 / 465, x_{23}=-1951 / 620, x_{24}=-1803 / 1810$ and $x_{34}=5$.

Higgs production at $\mathrm{e}^{+} \mathrm{e}^{-}$colliders

Higgs-strahlung (ZH)

W-fusion (WWH)

Figure from 2106.15438

NLO EW + QED radiations built in Monte Carlo event generators

QED ISR and FSR effects

Critically re-examined very recently
Blümlein, Schönwald: 2202.08476
Krauss, Price, Schönherr: 2203.10948
Frixione et al.: 2203.12557
and many more references therein

Figures from 2203.10948

Mixed QCD-EW corrections to ZH

Gong, Li, Xu, LLY, Zhao: 1609.03955
the $\alpha\left(m_{Z}\right)$ scheme.

$\sqrt{s}(\mathrm{GeV})$	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$	$\sigma_{\mathrm{NNLO}}(\mathrm{fb})$
240	252.0	228.6	231.5
250	252.0	227.9	230.8
300	190.0	170.7	172.9
350	135.6	122.5	124.2
500	60.12	54.03	54.42

Corrections at the level of $\sim 1 \%$: non-negligible compared to the $\sim 0.3 \%$ experimental accuracy

Sun, Feng, Jia, Sang: 1609.03995

\sqrt{s}	Schemes	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$	$\sigma_{\mathrm{NNLO}}(\mathrm{fb})$
240	$\alpha(0)$	223.14 ± 0.47	229.78 ± 0.77	$232.21_{-0.75-0.75+0.21}^{+0.75+0.10}$
	$\alpha\left(M_{Z}\right)$	252.03 ± 0.60	$228.36_{-0.81}^{+0.82}$	$231.28_{-0.79-0.25}^{+0.80+0.12}$
	G_{μ}	239.64 ± 0.06	$232.46_{-0.07}^{+0.07}$	$233.29_{-0.06-0.07}^{+0.07+0.03}$

Residue dependence on renormalization schemes

Calculation methods back then

Bottleneck was the two-loop triangle integrals
\rightarrow Purely numeric evaluation with sector decomposition
Private code of 1508.02512 (employed by 1609.03955)
FIESTA/CubPack (employed by 1609.03995)
Slow; bad convergence around or above $2 m_{Q}$ threshold

Calculation methods back then

Bottleneck was the two-loop triangle integrals
\rightarrow Purely numeric evaluation with sector decomposition
Private code of 1508.02512 (employed by 1609.03955)
FIESTA/CubPack (employed by 1609.03995)
Slow; bad convergence around or above $2 m_{Q}$ threshold
Alternative method: $1 / m_{t}$ expansion

Gong, Li, Xu, LLY, Zhao: 1609.03955

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{O}\left(m_{t}^{2}\right)$	$\mathcal{O}\left(m_{t}^{0}\right)$	$\mathcal{O}\left(m_{t}^{-2}\right)$	$\mathcal{O}\left(m_{t}^{-4}\right)$
240	81.8%	16.2%	1.4%	0.4%
250	81.7%	16.1%	1.5%	0.5%
300	80.0%	15.2%	2.1%	1.1%
350	69.7%	12.6%	2.7%	2.1%
500	137%	18.6%	17.3%	31.1%

Good approximation for low energies: analytic expressions easy to implement in Monte-Carlo

Not valid for high energies...

A new calculation for the HZV two-loop diagrams

Constructed a canonical basis of master integrals

$$
\begin{aligned}
d \vec{f}(x, y, z ; \epsilon) & =\epsilon d A(x, y, z) \vec{f}(x, y, z ; \epsilon) \\
& =\epsilon \sum_{i} A_{i} d \log \left(\alpha_{i}\right) \vec{f}(x, y, z ; \epsilon)
\end{aligned}
$$

Alphabet contains 4 kinds of square roots

$$
\sqrt{x(x+1)} \quad \sqrt{y(y+1)} \quad \sqrt{z(z+1)} \quad \sqrt{x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x}
$$

Solutions up to weight-3 written in terms of GPLs
Weight-4 parts expressed as one-fold integrals (not ideal, but usable)

A new calculation for the HZV two-loop diagrams

The new result works well for all kinematic configurations

NNLO $\mathcal{O}\left(\alpha \alpha_{s}\right)$ corrections
to ZH cross section

A new calculation for the HZV two-loop diagrams

The new result works well for all kinematic configurations

NNLO $\mathcal{O}\left(\alpha \alpha_{s}\right)$ corrections to ZH cross section

Also for bottom quark loops

Bottom contribution to the $M_{l l}$ distribution

Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3 \%$ experimental accuracy
A rather challenging task: ~ 20000 diagrams, a lot of physical scales Li, Wang, Wu: 2012.12513
Evaluation of a class of double boxes with a top quark loop Song, Freitas: 2101.00308

Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3 \%$ experimental accuracy
A rather challenging task: ~ 20000 diagrams, a lot of physical scales Li, Wang, Wu: 2012.12513
Evaluation of a class of double boxes with a top quark loop Song, Freitas: 2101.00308

Further development of computational techniques required!
e.g.: Canonical differential equations in both GPL sectors and elliptic sectors

Numeric solutions (pySecDec, DiffExp, AMFlow, ...)

Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3 \%$ experimental accuracy
A rather challenging task: ~ 20000 diagrams, a lot of physical scales Li, Wang, Wu: 2012.12513
Evaluation of a class of double boxes with a top quark loop Song, Freitas: 2101.00308

Further development of computational techniques required!
e.g.: Canonical differential equations in both GPL sectors and elliptic sectors

Numeric solutions (pySecDec, DiffExp, AMFlow, ...)

Perhaps some kind of approximate result is good enough
\rightarrow Vague thought: asymptotic expansion in the limit $m_{\text {everything }}^{2} \ll s, m_{t}^{2}$?

Mixed QCD-EW corrections to WWH

The two-loop amplitude can be written in a fully-analytic form (involving a lot of weight-4 GPLs)
$H \rightarrow W l \nu$

$\alpha\left(m_{Z}\right)$	LO	NLO EW	NNLO QCD-EW
$\Gamma\left(10^{-5} \mathrm{GeV}\right)$	4.597	4.474	4.518

G_{μ}	LO	NLO EW	NNLO QCD-EW
$\Gamma\left(10^{-5} \mathrm{GeV}\right)$	4.374	4.524	4.531

$$
e^{+} e^{-} \rightarrow \nu \bar{\nu} H
$$

$\sqrt{s}(\mathrm{GeV})$	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\delta \sigma_{\mathrm{NNLO}}(\mathrm{fb})$
250	7.88	0.010
350	30.6	0.040
500	74.8	0.101

Rather small corrections

Note: did not consider mixing with $Z(\rightarrow \nu \bar{\nu})+H$

In the future: two-loop EW? Perhaps only some approximations...

The numeric evaluation of GPLs

In all the above calculations one needs numeric evaluations
of a large amount of GPLs
The algorithm has been well-known for many years

Gehrmann, Remiddi: hep-ph/0111255 Vollinga, Weinzierl: hep-ph/0410259 Ablinger, Blümlein, Schneider: 1302.0378

The numeric evaluation of GPLs

In all the above calculations one needs numeric evaluations
of a large amount of GPLs

Gehrmann, Remiddi: hep-ph/0111255
Vollinga, Weinzierl: hep-ph/0410259
Ablinger, Blümlein, Schneider: 1302.0378

Program implementations:
GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

The numeric evaluation of GPLs

In all the above calculations one needs numeric evaluations
of a large amount of GPLs
The algorithm has been well-known for many years

Gehrmann, Remiddi: hep-ph/0111255
Vollinga, Weinzierl: hep-ph/0410259
Ablinger, Blümlein, Schneider: 1302.0378

Program implementations:
GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

For Monte-Carlo, one may generate a large grid and interpolate from it, but for high precision applications, the grid has to be dense enough (slow to generate)

The numeric evaluation of GPLs

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Gehrmann, Remiddi: hep-ph/0111255
Vollinga, Weinzierl: hep-ph/0410259
Ablinger, Blümlein, Schneider: 1302.0378

Program implementations:
GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

For Monte-Carlo, one may generate a large grid and interpolate from it, but for high precision applications, the grid has to be dense enough (slow to generate)
handyG: newer implementation using double-precision or quad-precision numbers, aimed for usage in Monte-Carlo Naterop, Signer, Ulrich: 1909.01656

The numeric evaluation of GPLs

The algorithm is recursive: one transforms the target GPL to a sum of so-called "convergent" GPLs, which can be evaluated by series expansion

A problem of numerically recursive implementations: to evaluate a single GPL, sometimes a transformed GPL needs to be computed for many many times!

- Greatly slows down the computation speed
- May lose accuracy due to repeated floating-point cancellations

The numeric evaluation of GPLs

The algorithm is recursive: one transforms the target GPL to a sum of so-called "convergent" GPLs, which can be evaluated by series expansion

A problem of numerically recursive implementations: to evaluate a single GPL, sometimes a transformed GPL needs to be computed for many many times!

- Greatly slows down the computation speed
> May lose accuracy due to repeated floating-point cancellations
We have encountered such situations in the calculation of $e^{+} e^{-} \rightarrow \nu \bar{\nu} H$: in general handyG can evaluate a weight- 4 GPL in far less than a second, but sometimes it takes several seconds

$$
\text { e.g.: } \quad G(1.0025,0.989,0.45,0.89+0.24 i ; 1)
$$

The problem becomes much worse at higher weights: at three-loops one needs weight-6

FastGPL

A re-implementation of the algorithm: hybrid analytic/numeric
The reduction to convergent GPLs are (mostly) done in a Mathematica package (to be released)

```
<< reduceGPL
map[{1, 0,1,1},
\a,a,b,
divergence
a,e,b,c
There is artificial divergence when c=x!
We need to rescale indices and argument of GPLs! (omplexdouble> b, complex<double> c, int sa, int sb, int sc, double x) (
complex<double> 64_abbc_bbcomplex<double>
a=a/x;
c=c/x;
if (b=c)
```



```
0,1},1)-G({0,a/b,x/b,1},1)+G({0,a/b},1)*(-sy [0] +G({0,b},{1, sb},x)) +G({a,0,0,b},{sa,1,1,sb},x);
l
else
const vector<complex<double>> sy ={L\mp@code{g}(b,sb),G{{a},{sa}, x),G({c/b}, 1),G({a,
```



```
    1)+G({0,a/b,0,c/b},1)+G{(0,a/b,c/b,x/b},1)+2.*G({0,c/b,0,a/b},1)+\sigma({0,c/b,a/b,x/b},1)+2.*G({c/b,0,0,
```



```
sb)+(sy[1]*sy[2]**pow(sy [0],2.))/2.+ sy[1]*(-sy[6]-\operatorname{sy [7] - G({0, 0, c/b), 1) + sy [2]* (-G({0, 0}, {1, 1}, x) - 2.*zeta(2)));}
if(cl:=x) res += (-sy [5] +G({0,a/b,x/b}, 1))*G({c},{sc}, x);
return res
```

Generate numeric codes automatically

The FastGPL library (up to weight-4 welltested, up to weight-6 implemented)

Aiming at fast evaluations using double-precision numbers

Comparison of speed

	$t_{\mathrm{f}}(\mathrm{s})$	$t_{\mathrm{h}}(\mathrm{s})$	$t_{\mathrm{h}} / t_{\mathrm{f}}$
$\mathrm{G}(1.0025,0.989,0.45,0.89+0.24 \mathrm{i} ; 1)$	0.006	2.2	~ 400
$\mathrm{G}(0.998,1.0545+0.127 \mathrm{i}, 0.91+0.25 \mathrm{i},-0.226 ; 1)$	0.004	1.5	~ 400
$\mathrm{G}(-1.04,-0.97,0.25,-0.84+0.45 \mathrm{i} ; 1)$	0.004	1.1	~ 300

Table 2: Average evaluation times of several GPLs which require many iterations.

	$0 a B C$	$0 a b C$	$0 a b c$	$00 a B$	$00 a b$					
$t_{\mathrm{f}}(\mathrm{ms})$	0.22	0.25	0.20	0.08	0.05					
$t_{\mathrm{h}}(\mathrm{ms})$	3.1	5.8	4.5	1.3	0.80					
$t_{\mathrm{h}} / t_{\mathrm{f}}$	~ 14	~ 23	~ 23	~ 17	~ 16					
							$\sim A B C D$	$a b C D$	$a b c D$	$a b c d$
$t_{\mathrm{f}}(\mathrm{ms})$	0.22	0.47	0.50	0.42						
$t_{\mathrm{h}}(\mathrm{ms})$	1.7	7.4	11.0	9.1						
$t_{\mathrm{h}} / t_{\mathrm{f}}$	~ 7.5	~ 16	~ 22	~ 22						

Table 3: Average evaluation times of a few categories of weight-4 GPLs.

$$
e^{+} e^{-} \rightarrow \nu \bar{\nu} H
$$

$\sqrt{s}(\mathrm{GeV})$	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\delta \sigma_{\mathrm{NNLO}}(\mathrm{fb})$	$t_{\mathrm{f}}(\mathrm{h})$	$t_{\mathrm{h}}(\mathrm{h})$	$t_{\mathrm{h}} / t_{\mathrm{f}}$
250	7.88	0.010	0.45	8.60	~ 19
350	30.6	0.040	0.51	9.02	~ 18
500	74.8	0.101	0.52	9.24	~ 18

10000 sample phase-space points
several thousand GPLs per point

FastGPL is faster in general, and is much faster for special cases

Preliminary tests show that the speed-boost is much larger at weight-6

Higgs decay

Weakness of the LHC

The hadronic channels
$H \rightarrow b \bar{b} \quad$ Important for $H Z Z$ and $H b \bar{b}$ couplings
$H \rightarrow g g \quad$ Probes new particles running in the loop
$H \rightarrow c \bar{c} \quad$ Unique window to charm Yukawa

Partial widths

> $H \rightarrow q \bar{q}$

- $\mathcal{O}\left(\alpha_{s}^{4}\right)$ in the limit of massless quarks
- $\mathcal{O}(\alpha), \mathcal{O}\left(\alpha \alpha_{s}\right)$ and partial $\mathcal{O}\left(\alpha^{2}\right)$
> $H \rightarrow g g$
Herzog et al.: 1707.01044
$\boldsymbol{>} \mathcal{O}\left(\alpha_{s}^{4}\right)$ with infinite $m_{t} \quad \Gamma_{\mathrm{N}^{4} \mathrm{~L}}(H \rightarrow g g)=\Gamma_{0}\left(1.844 \pm 0.011_{\text {series }} \pm 0.045_{\alpha_{s}\left(M_{Z}\right), 1 \%}\right)$
- $\mathcal{O}\left(\alpha_{s}^{2}\right)$ with $1 / m_{t}$ expansion
- $\mathcal{O}\left(\alpha_{s}^{2}\right)$ three-loop form factor with full m_{t} dependence (hence also bottom loop)
- $\mathcal{O}(\alpha)$ EW corrections

Event shapes

Event shapes provide more information than the total rates
> Discrimination between quark and gluon final states

- Probing kinematic dependence of the $H g g$ vertex
> New-physics enhanced light-quark Yukawa couplings?

Event shapes

Event shapes provide more information than the total rates

- Discrimination between quark and gluon final states
- Probing kinematic dependence of the $H g g$ vertex
- New-physics enhanced light-quark Yukawa couplings?

I'll focus on one particular variable: thrust

$$
\begin{gathered}
T=\max _{\vec{n}} \frac{\sum_{i}\left|\vec{n} \cdot \vec{p}_{i}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \\
\tau=1-T
\end{gathered}
$$

Fixed-order predictions for thrust distribution

Large corrections, especially in the gluon channel; $\mathrm{N}^{3} \mathrm{LO}$ needed?

Soft-collinear approximation not valid for larger τ; a full NNLO calculation required!

Scale dependence

Matched with parton shower

Resummed predictions

Large uncertainties in the gluon channel; N3 ${ }^{3} L$ or $N^{3} L^{\prime}$ needed?

Towards N3LL' thrust resummation

	hard, jet, soft functions	hard, jet, soft anomalous dimensions	cusp anomalous dimension, beta function
NNLL	2-loop	2-loop	3-loop
N3LL	2-loop	3-loop	4-loop
N3LL	3-loop	3-loop	4-loop
	available	available	

available except the non-logarithmic term of the 3-loop soft function

The 3-loop soft function

The non-logarithmic term of the 3-loop soft function for quarks was extracted from the numeric result of EERAD3

$$
c_{3}^{S}=2 s_{3}+691=-19988 \pm 1440 \text { (stat.) } \pm 4000 \text { (syst.) }
$$

Brüser, Liu, Stahlhofen: 1804.09722
With a Casimir scaling , the corresponding term for gluons

$$
c_{3}^{S} \sim-45000 \pm 10000
$$

A rather large constant term, one might worry about convergence!

Especially it multiplies $\alpha_{s}\left(\mu_{s}\right)$ at the low scale $\mu_{s} \sim \tau m_{H}$

Towards N3LL' thrust resummation

Preliminary result shows that the non-logarithmic term of the 3-loop soft function has a large impact!

We want to know its precise value! A part of the result: Chen, Feng, Jia, Liu: 2206.12323

道阻且长，行则将至

