Higgs production and decay: theory

Li Lin Yang Zhejiang University

The Higgs boson

Completes the standard model

- "Ghost" or "God" filling the vacuum of our universe
- \blacktriangleright Electroweak symmetry breaking \rightarrow masses of weak gauge bosons
- > Yukawa couplings \rightarrow masses of fundamental matter particles

What's beyond the SM?

We know that there has to be something new at higher energies beyond the SM

What's beyond the SM?

.

0.1

mass scale [TeV]

05 70 1011 020	16-140 tb ⁻¹ (13 TeV)	177 8-1
+ 1γ; 2e + 1γ; 2j + 1	() ()	36 fb ⁻¹
1.5-8 2106.10	09 (1j + 1y)	137 fb ⁻¹ 36 fb ⁻¹
5 75 1011 030/	(21)	137 fb ⁻¹
(J=7.) 1911.0594	(2)	137 fb ⁻¹
		137 fb ⁻¹
	<24 2103.02708 (21) <36 2103.02708 (21)	140 fb ⁻¹
01.04521 (2e + 2j)	2103/02/08/21/	77 fb ⁻¹
01.04521 (2μ + 2)		77 fb ⁻¹
		18 fb ⁻¹ 140 fb ⁻¹
		137 fb ⁻¹
8 (2e, 2µ)		140 fb ⁻¹
		36 fb ⁻¹ 101 fb ⁻¹
		101 fb ⁻¹ 36 fb ⁻¹
1125/ 3 it o ^{mim})		16 fb ⁻¹
1125(2) + P T /		36 fb ⁻¹
		36 fb ⁻¹ 77 fb ⁻¹
		36 fb ⁻¹
		38 fb ⁻¹
		36 fb ⁻¹
	<12 1803.08030 (2 j)	36 fb ⁻¹
<9.1 18. <10.	210443 (2γ, 2ℓ) 2107.13021 (≥ 1j + p _T ^{m=})	36 fb ⁻¹ 101 fb ⁻¹
<8.2 1803.0 S-PAS-EXO-19-014 (030 (2j) 4)	36 fb ⁻¹ 137 fb ⁻¹
AS-EXO-19-014 (er)		137 fb ⁻¹
08 (21)		140 fb ⁻¹
,		137 fb ⁻¹
1803.08030 (2 j) <9.7	805.06013 (≥7j(ℓ,γ))	36 fb ⁻¹ 36 fb ⁻¹
2j)		137 fb ⁻¹ 137 fb ⁻¹
1.04652 (y + j)		36 fb ⁻¹
1911.03947 (2i)		36 fb ⁻¹
2e)		36 fb ⁻¹
*/		36 10 -
		36 fb ⁻¹ 36 fb ⁻¹
		137 fb ⁻¹ 137 fb ⁻¹
		137 fb ⁻¹
10	T T	36 fb ⁻¹ 36 fb ⁻¹
	IeV	36 fb ⁻¹
ΙU		36 fb ⁻¹
		36 fb ⁻¹ 101 fb ⁻¹
		36 fb ⁻¹
		137 fb ⁻¹ 137 fb ⁻¹
)2708 (2e, 2μ)		140 fb ⁻¹
10 - 2-1		36 fb ⁻¹
ь (ze, zµ) S-EXO-19-014 (е µ)		140 fb ⁻¹ 137 fb ⁻¹
-19-014 (eτ) 9-014 (μτ)		137 fb ⁻¹ 137 fb ⁻¹
p ^{(mins})		78 fb ⁻¹ 36 fb ⁻¹
02.06075 (ℓ + p _T ^{miss})		137 fb ⁻¹
949 (2µ + 2 j)		36 fb ⁻¹
19 (Ze + Zj)		36 fb ⁻¹ 36 fb ⁻¹
6 1911.03947 (2j)		137 fb ⁻¹
10	0 Moriond 20	22

Current LHC direct searches have pushed the scale of new physics very high

Supplementary information from precision measurements important!

The need for precision!

Physics beyond the SM may reveal itself in various couplings of the Higgs boson

Latest from CMS (July 4th)

The future

LHC / HL-LHC Plan

HL-LHC CIVIL ENGINEERING:

DEFINITION

EXCAVATION

BUILDINGS

The future

Much higher precision can be achieved at the HL-LHC

The future

Future Higgs factories can provide even better accuracies

2205.08553

The need for theoretical precision!

The upcoming experimental accuracies are demanding much better theoretical precision for various scattering processes

- Estimated theoretical uncertainties that can be achieved during the HL-LHC run
- (reduced by a factor of $2 \sim 3$ w.r.t. current values)

Decay of the Higgs boson

Most frequent; relevant for $Hb\bar{b}$; but not easy to detect

Single Higgs production at the LHC

Gluon-fusion; largest rate; but only clean decay channels

VH-associated production, probing *bb* decay mode

 $t\bar{t}H$ associated production, probing top Yukawa

Single Higgs production at the LHC

Double Higgs production at the LHC

Higgs bosons can also be produced in pairs

Double Higgs production at the LHC

Higgs bosons can also be produced in pairs

Probing the Higgs potential

$$V(h) = \frac{m_h^2}{2}h^2 + \lambda_3 h^3 + \cdots$$

We are not there yet...

Single Higgs from gluon-fusion

Fully differential cross sections at N³LO

Chen et al.: 2102.07607

VH associated production (Higgs-strahlung)

Important for measuring gauge and Yukawa couplings

Electroweak symmetry breaking

Gluon-fusion channel unique for ZH-production

Formally higher order, but enhanced by gluon luminosity at the LHC

Theoretical uncertainties for ZH-production

Theoretical uncertainties dominated by missing higher order corrections

125.09 GeV.

	\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}$ [pb]	$\Delta_{\text{scale}} [\%]$	$\Delta_{\mathrm{PDF}\oplus\alpha_{\mathrm{s}}}$ [%]
1902 00134	13	0.880	$+3.50 \\ -2.68$	1.65
1902.00134	14	0.981	$+3.61 \\ -2.94$	1.90
	27	2.463	$+5.42 \\ -4.00$	2.24
		\mathbf{N}	lainly co	me from g

Table 10: Cross-section for the process $pp \to ZH$. The predictions for the $gg \to ZH$ channel are computed at LO, rescaled by the NLO K-factor in the $m_t \to \infty$ limit, and supplemented by the NLL_{soft} resummation. The photon contribution is omitted. Results are given for a Higgs boson mass $m_H =$

Loop induced

LO \rightarrow formally start at α_s^2

Heavy top EFT not good for distributions...

Approximations with small-mass expansion

4 scales: s, t, m_t, m_H

Difficult to solve: integral reduction? master integrals?

An approximation: $m_H^2, m_Z^2 \ll |s|, |t|, m_t^2$

5 scales: s, t, m_t, m_H, m_Z

Valid for rather generic physical kinematics

Small-mass expansion

 $F_{HH}(s, t_1, m_t^2, m_H^2) = \sum_{n=1}^{\infty} (m_H^2)^n F_{HH}^{(n)}(s, t_1, m_t^2)$ For HH: n=0

For ZH:

Xu, **LLY**: 1810.12002 Wang, Wang, Xu, Xu, LLY: 2010.15649

Small-mass expansion

For HH:
$$F_{HH}(s, t_1, m_t^2, m_H^2) = \sum_{n=0}^{\infty} (m_H^2)^n F_n$$

For ZH: A slight complication: polarization sum of the Z boson

Consistent power-counting required

Numeric results for $gg \rightarrow HH$

UV and IR finite part of the two-loop amplitude

Small-mass expansion 10 CPU seconds per phase space point

Wang, Wang, Xu, Xu, LLY: 2010.15649

Numeric results for $gg \rightarrow HH$

Numeric results for $gg \rightarrow ZH$

Wang, Xu, Xu, LLY: 2107.08206 NLO predictions for both total and differential cross sections $\sigma_{pp \to ZH} = 882.9^{+3.5\%}_{-2.5\%}$ fb including top quark mass dependence (first time ever)

Non-trivial kinematic dependence: not an overall K-factor

What about NNLO? ₂₂

Top-quark pair associated production

Probing the top-quark Yukawa coupling

Current state-of-the-art: NLO+NNLL in QCD, NLO in EW

Broggio, Ferroglia, Pecjak, **LLY**: 1601.00049 Ju, **LLY**: 1904.08744

See also 1610.07922 and references therein

Top-quark pair associated production

Probing the top-quark Yukawa coupling

Current state-of-the-art: NLO+NNLL in QCD, NLO in EW

Broggio, Ferroglia, Pecjak, LLY: 1601.00049 Ju, LLY: 1904.08744

See also 1610.07922 and references therein

(two-loop integrals with 7 physical scales)

Two-loop IR divergences for ttH

But it is possible to compute the IR divergent part of the amplitude!

The full two-loop amplitude is too difficult...

- Needs to be exactly cancelled against real corrections
- Provide an independent check for future (most likely numeric) calculations of the full amplitude

The universal structure of two-loop IR divergences

The IR divergences of any two-loop amplitude in gauge theories can be determined given the corresponding one-loop amplitudes (up to order ϵ^1 in DREG) and a universal anomalous dimension matrix

$$\Gamma(\{\underline{p}\},\{\underline{m}\},\mu) = \sum_{(i,j)} \frac{T_i \cdot T_j}{2} \gamma_{cusp}(\alpha_s) \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s)$$

$$- \sum_{(I,J)} \frac{T_I \cdot T_J}{2} \gamma_{cusp}(\beta_{IJ},\alpha_s) + \sum_i \gamma^I(\alpha_s) + \sum_{I,j} T_I \cdot T_j \gamma_{cusp}(\alpha_s) \ln \frac{m_I \mu}{-s_{Ij}}$$

$$+ \sum_{(I,J,K)} i f^{abc} T_I^a T_J^b T_K^c F_1(\beta_{IJ},\beta_{JK},\beta_{KI}) + \sum_{i,j} \gamma_{ij} \gamma_{ij}$$

A fact from soft-collinear factorization

Figure from 2112.07099

One-loop integrals to higher orders in ${\boldsymbol \epsilon}$

The one-loop integrals up to the finite term have been obtained long long ago

However, the problem of higher order terms in ϵ has not been generically solved!

't Hooft, Veltman (1979)

One-loop integrals to higher orders in ϵ

The one-loop integrals up to the finite term have been obtained long long ago

However, the problem of higher order terms in ϵ has not been generically solved!

Fortunately, it is known that all one-loop integral families admit canonical bases

't Hooft, Veltman (1979)

Bourjaily, Gardi, McLeod, Vergu: 1912.11067 Chen, Jiang, Xu, LLY: 2008.03045 Chen, Jiang, Ma, Xu, LLY: 2202.08127

$$d\vec{f}(z,\epsilon) = \epsilon \, dA(z) \, \vec{f}(z,\epsilon)$$

$$\vec{f}(z,\epsilon) = \sum_{n} \epsilon^{n} \vec{f}^{(n)}(z)$$

Generic result of the one-loop alphabet

Solutions consist of iterated integrals

$$\vec{f}^{(n)}(z) \supset \int_{z_0}^z d\log(\alpha_n(z_n))\cdots$$

Lots of information about the solutions is contained in the "alphabet"

We managed to obtain generic result of the alphabet using cut integrals in the Baikov representation and cleverly-chosen integration contours

Chen, Ma, LLY: 2201.12998 Abreu et al.: 1704.07931

Applied to the ttH case

4 topologies, 6 independent dimensionless kinematic variables

$$x_{ij} = \frac{s_{ij}}{m_t^2}, \quad x_h = \frac{m_H^2}{m_t^2}$$

Applied to the ttH case

4 topologies, 6 independent dimensionless kinematic variables

$$x_{ij} = \frac{s_{ij}}{m_t^2}, \quad x_h = \frac{m_H^2}{m_t^2}$$

The letters are sometimes rather complicated!

e.g.:
$$\frac{C_5 - \sqrt{-\mathcal{K}_5 \mathcal{K}_3}}{C_5 + \sqrt{-\mathcal{K}_5 \mathcal{K}_3}}$$

$$\begin{split} C_5 &= G(-p_3, p_1 + p_2, -p_4; -p_3, p_1 + p_2, -p_2) \\ &= \frac{1}{8} \Big(x_{45} x_{12} x_h - x_{12}^2 x_h - 2 x_{13} x_{12} x_h + x_{12} x_h - x_{13} x_{12}^2 + x_{24} x_{12}^2 + 2 x_{13} x_{12} \\ &+ x_{12} - 2 x_{24} x_{12} + x_{13} x_{35} x_{12} + x_{13} x_{45} x_{12} - 2 x_{24} x_{45} x_{12} + x_{35} x_{45} x_{12} \\ &+ x_{24} x_{45}^2 - x_{35} x_{45}^2 - x_{13} x_{45} - 2 x_{24} x_{45} + x_{13} x_{35} x_{45} + x_{13} - x_{13} x_{35} \\ &+ x_{35} x_{45} + x_{45} + x_{24} - 2 x_{45} x_{12} - 1 \Big) \,, \end{split}$$

$$\mathcal{K}_3 = G(-p_3, p_1 + p_2) = -\frac{1}{4} \left(x_{12}^2 + x_{45}^2 - 2 x_{45} x_{12} - 2 x_{12} - 2 x_{45} + 1 \right) \,, \end{split}$$

 $\mathcal{K}_5 = G(-p_3, p_1, p_2, -p_4)$ $=\frac{1}{16} \Big(x_{12}^2 x_h^2 - 2x_{13} x_{12}^2 x_h - 2x_{24} x_{12}^2 x_h + 2x_{13} x_{12} x_h - 4x_{13} x_{24} x_{12} x_h + 2x_{24} x_{12} x_h - 2x_{24} x_{12} x_h + 2x_{24}$ $+2x_{12}x_{35}x_{13}x_h-2x_{12}x_h+2x_{12}x_{24}x_{45}x_h-2x_{12}x_{35}x_{45}x_h+x_{12}^2x_{13}^2+x_{12}^2x_{24}^2$ $-2x_{13}x_{24}x_{12}^2 - 2x_{13}^2x_{12} - 2x_{24}^2x_{12} + 2x_{13}x_{12} + 4x_{13}x_{24}x_{12} - 2x_{13}^2x_{35}x_{12}$ $-2x_{12}x_{45}x_{24}^2+2x_{12}x_{13}x_{35}x_{24}-4x_{12}x_{45}x_{24}+2x_{12}x_{13}x_{45}x_{24}-4x_{12}x_{13}x_{35}$ $+x_{35}^2x_{13}^2+x_{13}^2+2x_{12}x_{35}x_{45}x_{13}-2x_{13}+x_{24}^2x_{45}^2+x_{35}^2x_{45}^2+2x_{12}x_{24}x_{35}x_{45}$ $-2x_{35}x_{13}^2 + 2x_{24}x_{13} - 2x_{24}x_{35}x_{13} + 2x_{35}x_{13} - 2x_{24}x_{35}x_{45}^2 - 2x_{24} - 2x_{24}^2x_{45}$ $-2x_{13}x_{45}x_{35}^2 + 2x_{13}x_{45}x_{35} + 2x_{13}x_{24}x_{45}x_{35} - 2x_{13}x_{24}x_{45} + 2x_{24}x_{45}$ $+2x_{24}x_{35}x_{45}-2x_{35}x_{45}+2x_{24}x_{12}+x_{24}^2+1$

Easily obtained using our method

Results for the two-loop IR poles

The square amplitudes can be decomposed into color coefficients

$$\begin{aligned} 2\operatorname{Re}\left<\mathcal{M}_{q}^{(0)}\left|\mathcal{M}_{q}^{(2)}\right> &= 2(N^{2}-1)\left(N^{2}A^{q}+B^{q}+\frac{1}{N^{2}}C^{q}+Nn_{l}D_{l}^{q}+Nn_{h}D_{h}^{q}\right.\\ &\quad +\frac{n_{l}}{N}E_{l}^{q}+\frac{n_{h}}{N}E_{h}^{q}+n_{l}^{2}F_{l}^{q}+n_{l}n_{h}F_{lh}^{q}+n_{h}^{2}F_{h}^{q}\right),\\ 2\operatorname{Re}\left<\mathcal{M}_{g}^{(0)}\left|\mathcal{M}_{g}^{(2)}\right> &= (N^{2}-1)\left(N^{3}A^{g}+NB^{g}+\frac{1}{N}C^{g}+\frac{1}{N^{3}}D^{g}\right.\\ &\quad +N^{2}n_{l}E_{l}^{g}+N^{2}n_{h}E_{h}^{g}+n_{l}F_{l}^{g}+n_{h}F_{h}^{g}+\frac{n_{l}}{N^{2}}G_{l}^{g}+\frac{n_{h}}{N^{2}}G_{l}^{g}+\frac{n_{h}}{N^{2}}G_{l}^{g}+\frac{n_{h}}{N^{2}}G_{l}^{g}+\frac{n_{h}}{N^{2}}G_{l}^{g}+\frac{n_{h}}{N^{2}}G_{l}^{g}+\frac{n_{h}}{N^{2}}G_{l}^{g}+\frac{n_{h}}{N}I_{lh}^{g}+\frac$$

Results at a sample phase-space point

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}
A^g	17.37022326	6.277797530	-162.1830217	559.8062598
B^g	-32.49510001	-34.75486260	-624.1343773	3901.332369
C^g		-9.463444735	-54.41556200	-497.5350517
D^g			143.6321997	-578.4857199
E_l^g		-20.26526047	46.54471184	-10.69967085
E_h^g			-24.23013938	79.68650479
F_l^g		37.91095001	-74.94866603	71.66904977
F_h^g			43.70151160	-132.3384924
G_l^g			4.731722368	85.25318119
G_h^g				6.363526190
H_l^g			3.860049613	-10.52987601
H^g_{lh}				8.076713126
H_h^g				
I_l^g			-7.221133335	19.49234494
I^g_{lh}				-14.56717053
I_h^g				
A^q	2.390051823	15.03938540	0.597121534	-34.95784899
B^q	-4.780103646	-22.69017086	49.54607207	106.0851578
C^q	2.390051823	7.650785464	-186.5751188	-21.39439443
D_l^q		-2.390051823	0.308675876	-6.605875838
D_h^q			6.244349191	4.860387981
E_l^q		2.390051823	1.610219156	77.52356965
E_h^q			-6.244349191	19.76269918
F_l^q				
F^q_{lh}				
F_h^q				

Table 1. IR poles decomposed as color coefficients for the phase-space point $x_{12} = 10, x_{13} =$ -1339/920, $x_{14} = -2269/465$, $x_{23} = -1951/620$, $x_{24} = -1803/1810$ and $x_{34} = 5$.

Higgs production at e+e- colliders

W-fusion (WWH)

NLO EW + QED radiations built in Monte Carlo event generators

Figure from 2106.15438

Figures from 2203.10948

Mixed QCD-EW corrections to ZH

Gong, Li, Xu, LLY, Zhao: 1609.03955 the $\alpha(m_Z)$ scheme.

\sqrt{s} (GeV)	$\sigma_{ m LO}~({ m fb})$	$\sigma_{ m NLO}~(m fb)$	$\sigma_{\rm NNLO}~({\rm fb})$
240	252.0	228.6	231.5
250	252.0	227.9	230.8
300	190.0	170.7	172.9
350	135.6	122.5	124.2
500	60.12	54.03	54.42

Sun, Feng, Jia, Sang: 1609.03995

\sqrt{s}	Schemes	$\sigma_{ m LO}~({ m fb})$	$\sigma_{ m NLO}~(m fb)$	$\sigma_{\rm NNLO}~({\rm fb})$
240	lpha(0)	223.14 ± 0.47	229.78 ± 0.77	$232.21^{+0.75+0.10}_{-0.75-0.21}$
	$\alpha(M_Z)$	252.03 ± 0.60	$228.36\substack{+0.82 \\ -0.81}$	$231.28^{+0.80+0.12}_{-0.79-0.25}$
	G_{μ}	239.64 ± 0.06	$232.46\substack{+0.07 \\ -0.07}$	$233.29\substack{+0.07+0.03\\-0.06-0.07}$

Corrections at the level of $\sim 1\%$: non-negligible compared to the ~0.3% experimental accuracy

Longitudinal

Residue dependence on renormalization schemes

Unpolarized

Calculation methods back then

- - Private code of 1508.02512 (employed by 1609.03955)
 - FIESTA/CubPack (employed by 1609.03995)
 - Slow; bad convergence around or above $2m_O$ threshold

Calculation methods back then

→ Purely numeric evaluation with sector decomposition

Alternative method: $1/m_t$ expansion

Gong, Li, Xu, LLY, Zhao: 1609.03955

\sqrt{s} (GeV)	$\mathcal{O}(m_t^2)$	$\mathcal{O}(m_t^0)$	$\mathcal{O}(m_t^{-2})$	$\mathcal{O}(m_t^{-4})$
240	81.8%	16.2%	1.4%	0.4%
250	81.7%	16.1%	1.5%	0.5%
300	80.0%	15.2%	2.1%	1.1%
350	69.7%	12.6%	2.7%	2.1%
500	137%	18.6%	17.3%	31.1%

Bottleneck was the two-loop triangle integrals

- Private code of 1508.02512 (employed by 1609.03955)
- FIESTA/CubPack (employed by 1609.03995)
- Slow; bad convergence around or above $2m_Q$ threshold

- Good approximation for low energies: analytic expressions easy to implement in Monte-Carlo
- Not valid for high energies...

A new calculation for the HZV two-loop diagrams

$$\sqrt{x(x+1)}$$
 $\sqrt{y(y+1)}$ $\sqrt{z(z+1)}$ $\sqrt{x^2 + y^2 + z^2 - 2xy - 2yz - 2}$

- Constructed a canonical basis of master integrals

$$d\vec{f}(x, y, z; \epsilon) = \epsilon \, dA(x, y, z) \, \vec{f}(x, y, z; \epsilon)$$
$$= \epsilon \sum_{i} A_{i} \, d \log(\alpha_{i}) \, \vec{f}(x, y, z; \epsilon)$$

Alphabet contains 4 kinds of square roots

- Solutions up to weight-3 written in terms of GPLs
- Weight-4 parts expressed as one-fold integrals (not ideal, but usable)

Wang, Xu, LLY: 1905.

A new calculation for the HZV two-loop diagrams Wang, Xu, LLY: 1905.11

The new result works well for all kinematic configurations

NNLO $\mathcal{O}(\alpha \alpha_s)$ corrections to ZH cross section

463

A new calculation for the HZV two-loop diagrams Wang, Xu, LLY: 1905.1

The new result works well for all kinematic configurations

NNLO $\mathcal{O}(\alpha \alpha_s)$ corrections to ZH cross section

Also for bottom quark loops

Bottom contribution to the M_{II} distribution

Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3\%$ experimental accuracy

A rather challenging task: \sim 20000 diagrams, a lot of physical scales Li, Wang, Wu: 2012.12513

Evaluation of a class of double boxes with a top quark loop Song, Freitas: 2101.00308

Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3\%$ experimental accuracy

A rather challenging task: \sim 20000 diagrams, a lot of physical scales

Evaluation of a class of double boxes with a top quark loop

e.g.: elliptic sectors

- Li, Wang, Wu: 2012.12513
- Song, Freitas: 2101.00308
- Further development of computational techniques required!
 - Canonical differential equations in both GPL sectors and
 - Numeric solutions (pySecDec, DiffExp, AMFlow, ...)

Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3\%$ experimental accuracy

A rather challenging task: \sim 20000 diagrams, a lot of physical scales

Evaluation of a class of double boxes with a top quark loop

e.g.: elliptic sectors

Perhaps some kind of approximate result is good enough → Vague thought: asymptotic expansion in the limit $m_{\text{everything}}^2 \ll s, m_t^2$?

- Li, Wang, Wu: 2012.12513
- Song, Freitas: 2101.00308
- Further development of computational techniques required!
 - Canonical differential equations in both GPL sectors and
 - Numeric solutions (pySecDec, DiffExp, AMFlow, ...)

Mixed QCD-EW corrections to WWH

 $H \rightarrow W l \nu$

$\alpha(m_Z)$	LO	NLO EW	NNLO QCD-EW
$\Gamma (10^{-5} \text{ GeV})$	4.597	4.474	4.518

G_{μ}	LO	NLO EW	NNLO QCD-EW
$\Gamma (10^{-5} \text{ GeV})$	4.374	4.524	4.531

Di Vita, Mastrolia, Primo, Schubert: 1702.07331 Ma, Wang, Xu, **LLY**, Zhou: 2105.06316 Wang, LLY, Zhou: 2112.04122

The two-loop amplitude can be written in a fully-analytic form (involving a lot of weight-4 GPLs)

$e^+e^- \rightarrow \nu \bar{\nu} H$

$\sqrt{s} \; ({\rm GeV})$	$\sigma_{\rm LO}~({\rm fb})$	$\delta\sigma_{\rm NNLO}$ (fb)
250	7.88	0.010
350	30.6	0.040
500	74.8	0.101

Rather small corrections

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Program implementations:

GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Program implementations:

GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

For Monte-Carlo, one may generate a large grid and interpolate from it, but for high precision applications, the grid has to be dense enough (slow to generate)

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Program implementations:

GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

For Monte-Carlo, one may generate a large grid and interpolate from it, but for high precision applications, the grid has to be dense enough (slow to generate)

handyG: newer implementation using double-precision or quad-precision numbers, aimed for usage in Monte-Carlo Naterop, Signer, Ulrich: 1909.01656

The algorithm is recursive: one transforms the target GPL to a sum of so-called "convergent" GPLs, which can be evaluated by series expansion

A problem of **numerically** recursive implementations: to evaluate a single GPL, sometimes a transformed GPL needs to be computed for many many times!

- Greatly slows down the computation speed
- May lose accuracy due to repeated floating-point cancellations

The algorithm is recursive: one transforms the target GPL to a sum of so-called "convergent" GPLs, which can be evaluated by series expansion

A problem of **numerically** recursive implementations: to evaluate a single GPL, sometimes a transformed GPL needs to be computed for many many times!

- Greatly slows down the computation speed
- ► May lose accuracy due to repeated floating-point cancellations

The problem becomes much worse at higher weights: at three-loops one needs weight-6

We have encountered such situations in the calculation of $e^+e^- \rightarrow \nu \bar{\nu} H$: in general handyG can evaluate a weight-4 GPL in far less than a second, but sometimes it takes several seconds

e.g.: G(1.0025, 0.989, 0.45, 0.89 + 0.24i; 1)

FastGPL

A re-implementation of the algorithm: hybrid analytic/numeric

The reduction to convergent GPLs are (mostly) done in a Mathematica package (to be released)

```
<< reduceGPL
```

```
map[\{1, 0, 1, 1\}, 3]
{a,0,b,b}
There is no any artificial divergence!
{a,0,b,c}
There is artificial divergence when c=x!
 We need to rescale indices and argument of GPLs
complex<double> G4_a0bc_b(complex<double> a, complex<double> b, complex<double> c, int sa, int sb, int sc, double x) {
a=a/x;
b=b/x;
 c=c/x;
x=1.;
if(b==c)
 const vector<complex<double>> sy = {G({a, b}, {sa, sb}, x), G({a}, {sa}, x), G({0, a/b, 1}, 1), G({b}, {sb}, x)};
 complex < double > res = sy[1] * sy[2] - sy[2] * sy[3] + sy[0] * G(\{0, 1\}, 1) - sy[1] * G(\{0, 0, 1\}, 1) + sy[3] * G(\{0, a/b, x/b\}, 1) + G(\{0, a/b, x/b\},
          0, 1\}, 1) - G(\{0, a/b, x/b, 1\}, 1) + G(\{0, a/b\}, 1) * (-sy[0] + G(\{0, b\}, \{1, sb\}, x)) + G(\{a, 0, 0, b\}, \{sa, 1, 1, sb\}, x);
return res;
 else {
 const vector<complex<double>> sy = {Log(b, sb), G({a}, {sa}, x), G({c/b}, 1), G({a}, {a})
            c}, {sa, sc}, x), G({0, a}, {1, sa}, x), G({0, a/b, c/b}, 1), G({0, c/b, a/b}, 1), G({c/b, 0, a/b}, 1)};
 complex < double > res = sy[0] * (sy[2] * sy[4] - sy[5] - sy[6] - sy[7]) + sy[3] * G(\{0, c/b\}, 1) + 2.*G(\{0, 0, a/b, c/b\}, 1) + 2.*G(\{0, 0, c/b, a/b\}, 1) + 2.*G(\{0, 0, c/b\}, 1) + 2.
          1) + G(\{0, a/b, 0, c/b\}, 1) + G(\{0, a/b, c/b, x/b\}, 1) + 2.*G(\{0, c/b, 0, a/b\}, 1) + G(\{0, c/b, a/b, x/b\}, 1) + 2.*G(\{c/b, 0, 0, c/b\}, 1) + 2.*G(\{c/b, 0, c/b\}, 1) + 2.*G(\{c/b, 0, 0, c/b\}, 1) + 2.*G(\{c/b, 
            a/b, 1) + G({c/b, 0, a/b, x/b}, 1) + G({0, a/b}, 1)*(-sy[3] + G({0, c}, {1, sc}, x)) + sy[2]*(G({0, 0, a}, {1, 1, sa}, x) - G({a, a/b}, x)) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x))) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x)) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x))) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x)))
            0, c\}, \{sa, 1, sc\}, x)) + G(\{a, 0, 0, c\}, \{sa, 1, 1, sc\}, x) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) + (-(sy[0]*sy[2]*sy[2]) + sy[6] + s
               sb) + (sy[1]*sy[2]*pow(sy[0], 2.))/2. + sy[1]*(-sy[6] - sy[7] - G(\{0, 0, c/b\}, 1) + sy[2]*(-G(\{0, 0\}, \{1, 1\}, x) - 2.*Zeta(2)));
 if (c!=x) res += (-sy[5] + G(\{0, a/b, x/b\}, 1)) * G(\{c\}, \{sc\}, x);
 return res;
}
```

https://github.com/llyang/FastGPL

Generate numeric codes automatically

The FastGPL library (up to weight-4 welltested, up to weight-6 implemented)

Aiming at fast evaluations using double-precision numbers

Comparison of speed

	$t_{\rm f}$ (s)	$t_{\rm h}~({\rm s})$	$t_{ m h}/t_{ m f}$
${\tt G}({\tt 1.0025}, {\tt 0.989}, {\tt 0.45}, {\tt 0.89+0.24i}; {\tt 1})$	0.006	2.2	~ 400
G(0.998, 1.0545 + 0.127i, 0.91 + 0.25i, -0.226; 1)	0.004	1.5	~ 400
G(-1.04,-0.97,0.25,-0.84+0.45i;1)	0.004	1.1	~ 300

Table 2: Average evaluation times of several GPLs which require many iterations.

		0	aBC	0ab	bC	0ab	С	00a	B	00a	b
$t_{ m f}$	(ms)	(0.22	0.25		0.20		0.08		0.0	5
$t_{ m h}$	$_{n}$ (ms)		3.1	5.	8	4.5)	1.3	•	0.8	0
	$t_{ m h}/t_{ m f}$		~ 14	2	23	~ 2	3	~ 1	7	~ 1	.6
			ABC	CD	ab	CD	a	bcD	a	bcd	
	$t_{\rm f} \ ({\rm ms}$	5)	0.2	2	0	.47	().50	0	.42	
	$t_{\rm h}~({\rm ms}$	s)	1.7	7	7	7.4]	1.0	(9.1	
	$t_{ m h}/t_{ m f}$	•	~ 7	.5	\sim	16	\sim	- 22	\sim	- 22	

Table 3: Average evaluation times of a few categories of weight-4 GPLs.

 $e^+e^- \rightarrow \nu \bar{\nu} H$

$\sqrt{s} \; (\text{GeV})$	$\sigma_{\rm LO}~({\rm fb})$	$\delta\sigma_{\rm NNLO}$ (fb)	$t_{\rm f}$ (h)	$t_{\rm h}$ (h)	$t_{ m h}$
250	7.88	0.010	0.45	8.60	2
350	30.6	0.040	0.51	9.02	\sim
500	74.8	0.101	0.52	9.24	\sim

10000 sample phase-space points several thousand GPLs per point

FastGPL is faster in general, and is much faster for special cases

Preliminary tests show that the speed-boost is much larger at weight-6

Higgs decay

Weakness of the LHC

The hadronic channels

- Important for HZZ and $Hb\bar{b}$ couplings $H \rightarrow b\bar{b}$
- $H \rightarrow gg$ Probes new particles running in the loop
- Unique window to charm Yukawa $H \rightarrow c\bar{c}$

Partial widths

$\succ H \rightarrow q\bar{q}$

- > $\mathcal{O}(\alpha_s^4)$ in the limit of massless quarks
- ► $\mathcal{O}(\alpha)$, $\mathcal{O}(\alpha\alpha_s)$ and partial $\mathcal{O}(\alpha^2)$

$\succ H \rightarrow gg$

- $\succ \mathcal{O}(\alpha_s^4) \text{ with infinite } m_t \qquad \Gamma_{N^4LO}(H \to gg) = \Gamma_0 \left(1.844 \pm 0.011_{\text{series}} \pm 0.045_{\alpha_s(M_Z),1\%} \right)$
- $\blacktriangleright O(\alpha_s^2)$ with $1/m_t$ expansion
- > $\mathcal{O}(\alpha_c^2)$ three-loop form factor with full m_t dependence (hence also bottom loop)
- ► $\mathcal{O}(\alpha)$ EW corrections

Freitas (2021) and references therein

Herzog et al.: 1707.01044

Czakon, Niggetiedt: 2001.03008

Event shapes

Event shapes provide more information than the total rates

- Discrimination between quark and gluon final states
- > Probing kinematic dependence of the *Hgg* vertex
- New-physics enhanced light-quark Yukawa couplings?

Event shapes

Event shapes provide more information than the total rates

- Discrimination between quark and gluon final states
- Probing kinematic dependence of the Hgg vertex
- New-physics enhanced light-quark Yukawa couplings?

I'll focus on one particular variable: thrust

$$T = \max_{\overrightarrow{n}} \frac{\sum_{i} |\overrightarrow{n} \cdot \overrightarrow{p}_{i}|}{\sum_{i} |\overrightarrow{p}_{i}|}$$

$$\tau = 1 - T$$

Fixed-order predictions for thrust distribution

С О

1/F₀

0

Ratio to

0.05

Large corrections, especially in the gluon channel; N³LO needed?

Soft-collinear approximation not valid for larger τ ; a full NNLO calculation required!

Parton shower and/or resummation needed for smaller τ

Gao, Gong, Ju, LLY: 1901.02253

Scale dependence

Matched with parton shower

Resummed predictions

Large uncertainties in the gluon channel; N³LL or N³LL' needed?

Towards N³LL' thrust resummation

ns	hard, jet, soft anomalous dimensions	cusp anomalous dimension, beta functio
	2-loop	3-loop
	3-loop	4-loop
	3-loop	4-loop
	available	available

available except the non-logarithmic term of the 3-loop soft function

The 3-loop soft function

The non-logarithmic term of the 3-loop soft function for quarks was extracted from the numeric result of EERAD3

$$c_3^S = 2s_3 + 691 = -1998$$

With a Casimir scaling, the corresponding term for gluons

$$c_3^S \sim -4$$

A rather large constant term, one might worry about convergence!

Especially it multiplies $\alpha_s(\mu_s)$ at the low scale $\mu_s \sim \tau m_H$

 $38 \pm 1440 \,(\text{stat.}) \pm 4000 \,(\text{syst.})$

Brüser, Liu, Stahlhofen: 1804.09722

 45000 ± 10000

Towards N³LL' thrust resummation

Thank you!

