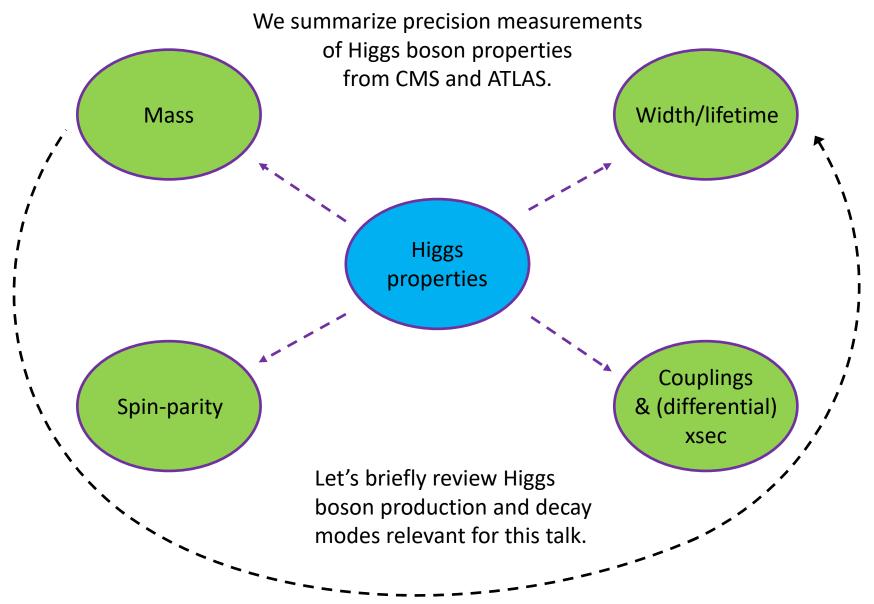
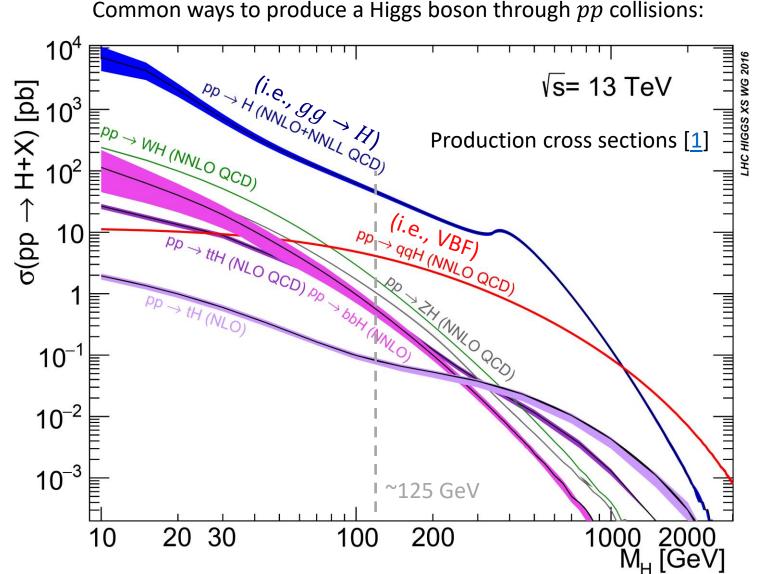

Higgs boson precision measurements @ CMS and ATLAS

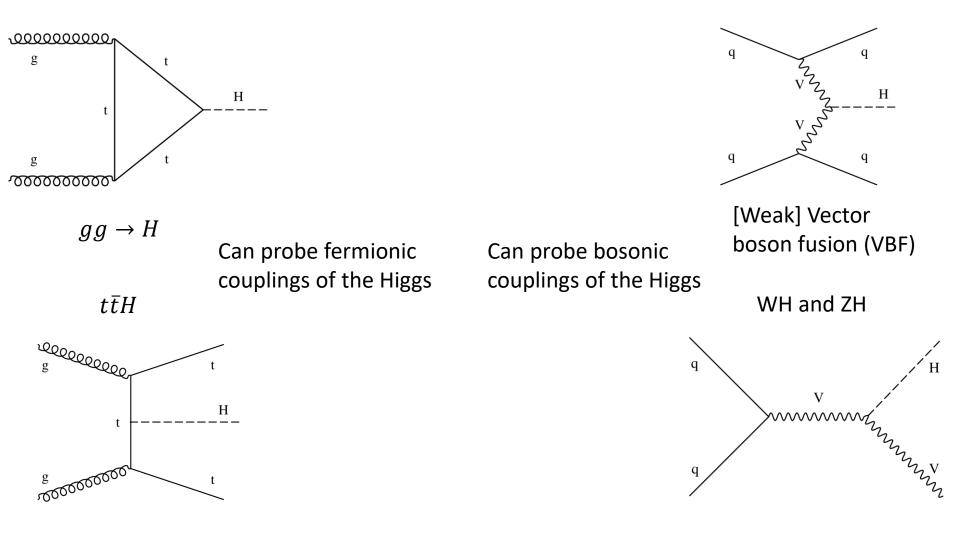
Ulascan Sarica


UC SANTA BARBARA

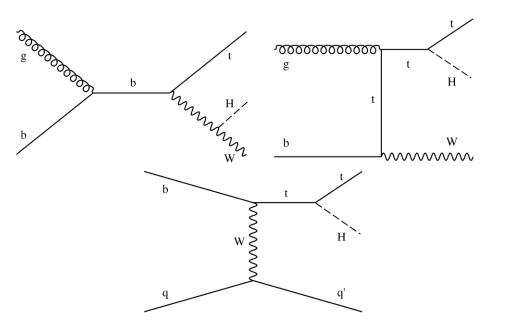
Higgs Potential '22 July 25, 2022


Introduction

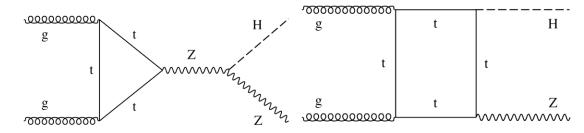
Introduction



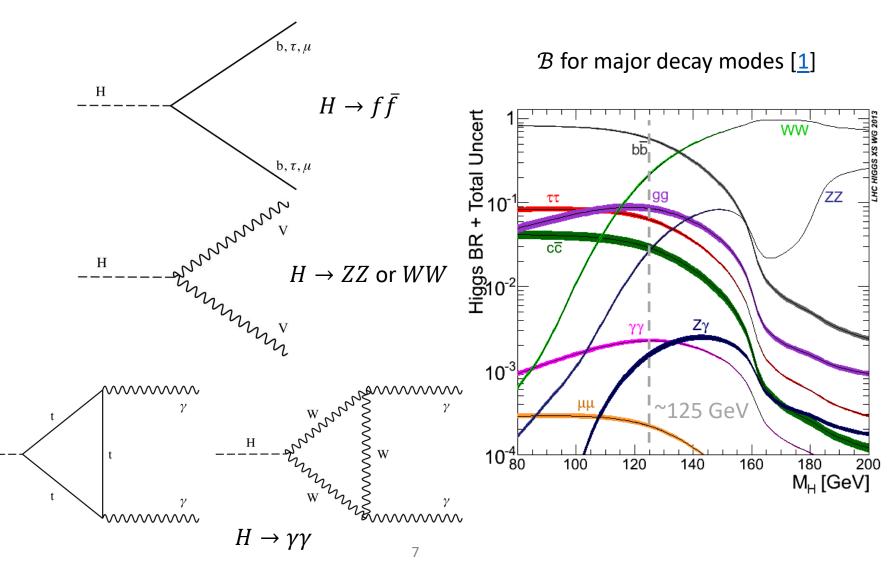
Higgs production and decay


Higgs production

Most common production mechanisms:

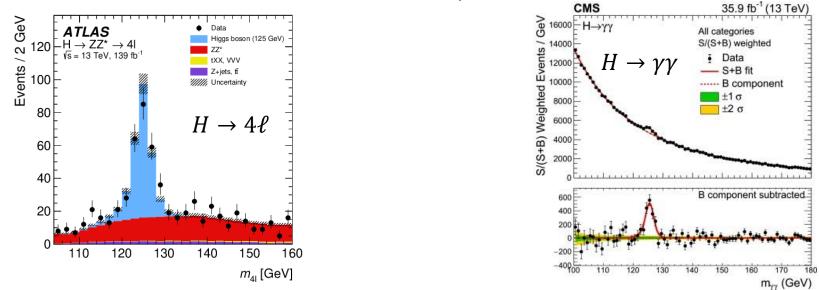

Higgs production

Less common ways:


tH and *tHW*: Allows to resolve relative phase of *Htt* and *HWW* couplings

 $gg \rightarrow ZH$: Allows to resolve relative phase of Htt and HZZ couplings

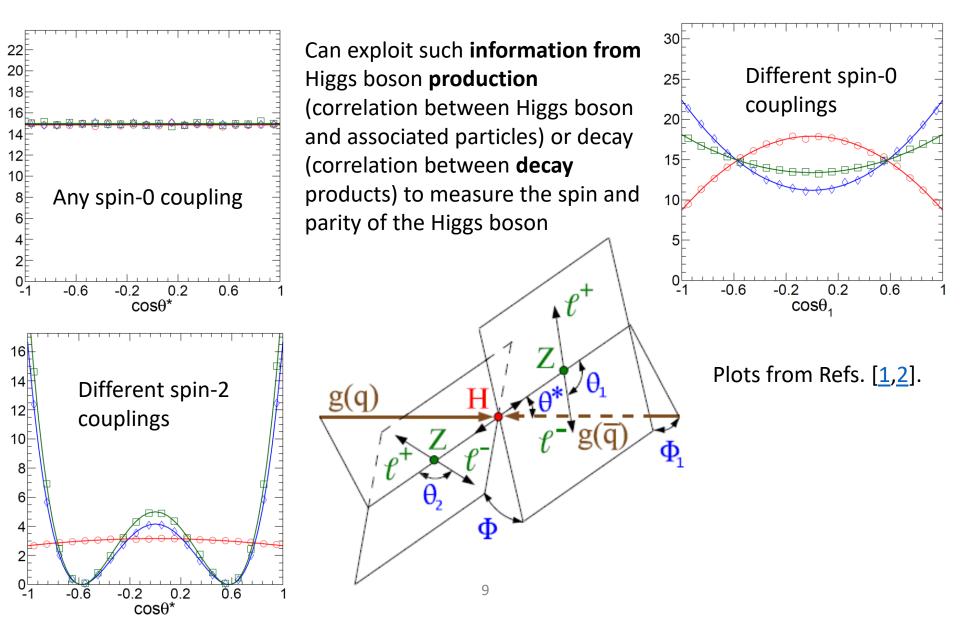
Higgs decay


Higgs boson decay modes commonly used in analyses:

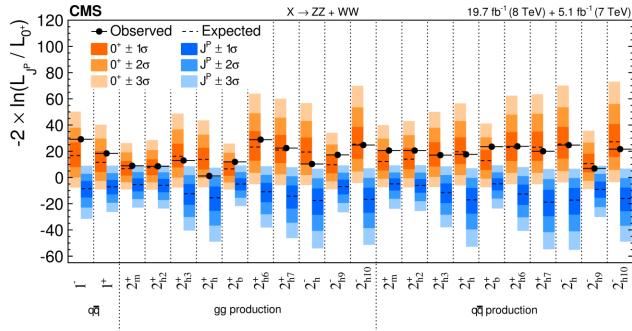
Η

Mass

Measure mass from the resonance mass line shape:


Doable from the 4ℓ and $\gamma\gamma$ final states to excellent precision (1-2% resolution)

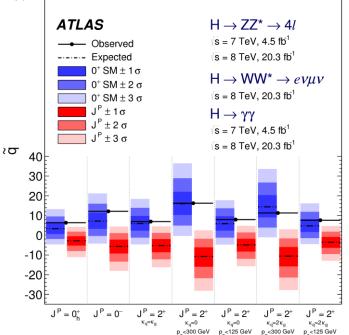
Best measurements to date:


→ $4\ell + \gamma\gamma$ combined measurement of ATLAS and CMS using LHC Run 1 data [1]: $m_H = 125.09 \pm 0.21$ (stat.) ± 0.11 (syst.) GeV → $4\ell + \gamma\gamma$ measurement of CMS using LHC Run 1 + Run 2 2016 data [2]: $m_H = 125.38 \pm 0.11$ (stat.) ± 0.08 (syst.) GeV → 4ℓ measurement of ATLAS using LHC Run 1 + Run 2 2016-2018 data [3]: $m_H = 124.94 \pm 0.17$ (stat.) ± 0.03 (syst.) GeV

Spin-parity

Angular correlations change for different Higgs boson spin and parity scenarios.

Spin from diboson decays



Extensive list of tests of spin-1 and -2 hypotheses from CMS and ATLAS using ZZ, WW and $\gamma\gamma$ decays [1,2]

The Higgs boson is consistent with spin 0.

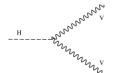
Spin-1 models excluded at >99.999% CL from CMS using ZZ + WW decays.

Spin-2 models excluded at >99% CL from CMS using ZZ + WW decays, or at 99.87% for minimal gravitons using $ZZ + WW + \gamma\gamma$ decays, >99.9% CL in the tested ATLAS models using $ZZ + WW + \gamma\gamma$ decays

Anomalous spin-0 couplings: HVV

٦

$$A(HVV) \sim \left[a_{1} - e^{i\phi_{\Lambda 1}} \frac{(q_{V1}^{2} + q_{V2}^{2})}{\Lambda_{1}^{2}} - e^{i\phi_{\Lambda 1}^{Z\gamma}} \frac{q_{\gamma}^{2}}{(\Lambda_{1}^{Z\gamma})^{2}} \dots \right] m_{V}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*}$$
$$+ |a_{2}| e^{i\phi_{a2}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + |a_{3}| e^{i\phi_{a3}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$


Г

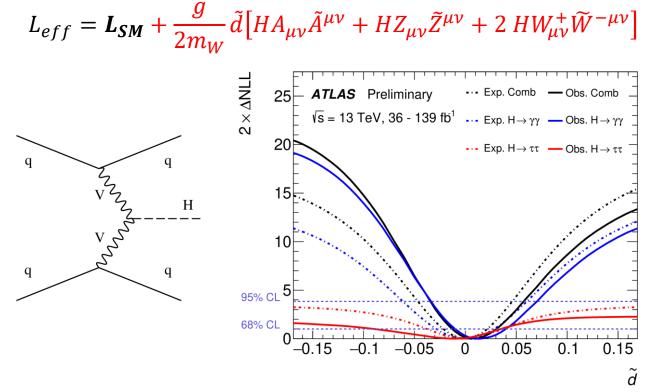
HVV amplitude \propto SM-like a_1 term + other BSM CP-even or -odd contributions

CMS $H \rightarrow ZZ + H \rightarrow \tau\tau$ measurements using Run 2 data [1] Results in terms of fractional xsec $f_{ai} = |a_i|^2 \sigma_i / (|a_1|^2 \sigma_1 + |a_i|^2 \sigma_i)$ with $\phi_{ai} = 0$ or π . \rightarrow Make use of HVV vertices in both Higgs decay and production.

Approach	Parameter	Observe	$ed/(10^{-3})$	Expected / (10^{-3})		
		68% CL	95% CL	68% CL	95% CL	
	f _{a3}	$0.20\substack{+0.26 \\ -0.16}$	[-0.01, 0.88]	0.00 ± 0.05	[-0.21, 0.21]	
Approach 1	f_{a2}	$0.7\substack{+0.8 \\ -0.6}$	[-1.0, 2.5]	$0.0\substack{+0.5\-0.4}$	[-1.1, 1.2]	
11	$f_{\Lambda 1}$	$-0.04\substack{+0.04\\-0.08}$	[-0.22, 0.16]	$0.00\substack{+0.11 \\ -0.04}$	[-0.11, 0.38]	
$(a_i^{WW} = a_i^{ZZ})$	$f^{Z\gamma}_{\Lambda 1}$	$0.7^{+1.6}_{-1.3}$	[-2.7, 4.1]	$0.0^{+1.0}_{-1.0}$	[-2.6, 2.5]	
Approach 2	f _{a3}	$0.28\substack{+0.39 \\ -0.23}$	[-0.01, 1.28]	0.00 ± 0.08	[-0.30, 0.30]	
$(a_3^{WW} = a_3^{ZZ})$	$\cos^2 \theta_W$)					

 \rightarrow HZZ channel results [2] alone (see table in backup) also provide constraints with other BSM couplings profiled. 11

Anomalous spin-0 couplings: HVV

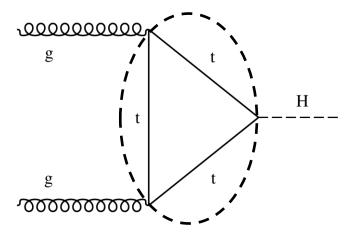

ATLAS $H \rightarrow ZZ + WW$ measurements using Run 1 data [1] \rightarrow In terms of coupling scale factor ratios:

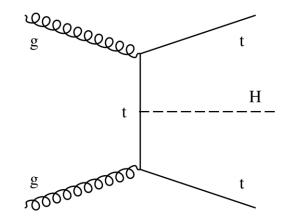
Coupling ratio	Best-fit value	95% CL Excl	usion Regions
Combined	Observed	Expected	Observed
• $\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	-0.48	$(-\infty, -0.55] \cup [4.80, \infty)$	$(-\infty, -0.73] \cup [0.63, \infty)$
• $(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	-0.68	$(-\infty, -2.33] \cup [2.30, \infty)$	$(-\infty, -2.18] \bigcup [0.83, \infty)$

 \rightarrow Comparable to Run 1 CMS results using the same final states [2]:

Parameter	Observed	Expected
$(\Lambda_1 \sqrt{ a_1 })\cos(\phi_{\Lambda_1})$	$[-\infty, -100 \text{GeV}] \cup [103 \text{GeV}, \infty]$	$[-\infty, 43\mathrm{GeV}] \cup [116\mathrm{GeV}, \infty]$
• a_2/a_1	[-0.58, 0.76]	[-0.45, 1.67]
• <i>a</i> ₃ / <i>a</i> ₁	[-1.54, 1.57]	[-2.65, 2.65]

Anomalous spin-0 couplings: HVV




HVV amplitude ∝ SM-like term + CP-odd contribution

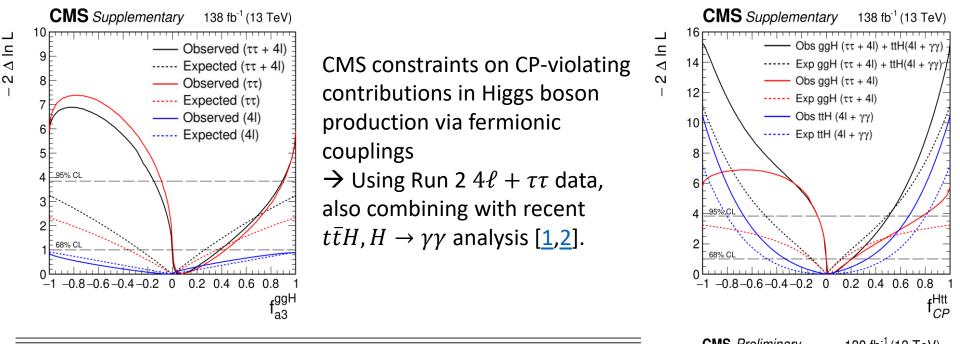
ATLAS $H \rightarrow \tau \tau$ (Run 2 2016) + $H \rightarrow \gamma \gamma$ (Run 2) through VBF production [<u>1</u>,<u>2</u>]

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	-	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]

Anomalous spin-0 couplings: Hgg/Htt

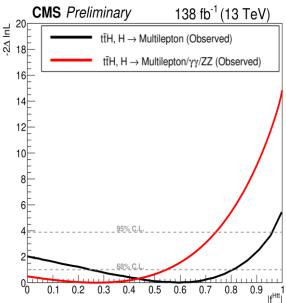
$$A(Hgg) \sim a_2^{gg} \mathbf{f}_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{gg} \mathbf{f}_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

With $m_H < 2m_t$, resolving loop structure from $gg \rightarrow H$ on-shell Higgs boson production statistically difficult. With discovery of $t\bar{t}H$ associated production [<u>1,2</u>], one can probe *Htt* couplings directly


 $A(Htt) = -\frac{m_t}{m_t} \bar{\psi}_t (\kappa_t + i\tilde{\kappa}_t \gamma_5) \psi_t$

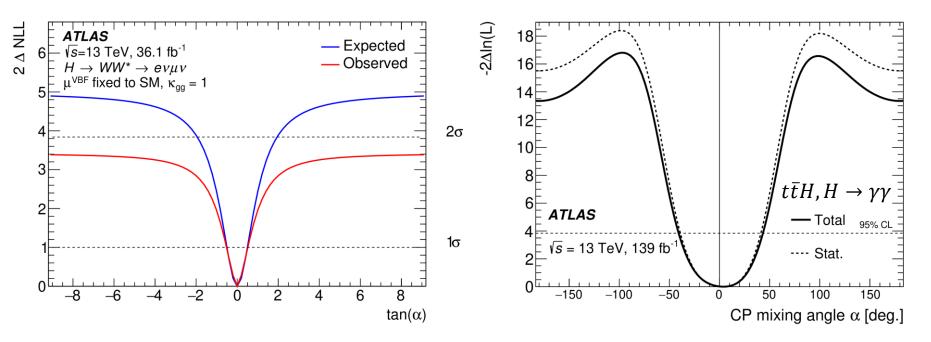
EFT treatment with point-like couplings \rightarrow Can be translated to *Htt* couplings

 \Rightarrow


$$\Rightarrow \text{ If } f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sgn}\left(\frac{a_3^{gg}}{a_2^{gg}}\right) \text{ and } f_{CP}^{Htt} = \frac{|\tilde{\kappa}_t|^2}{|\kappa_t|^2 + |\tilde{\kappa}_t|^2} \operatorname{sgn}\left(\frac{\tilde{\kappa}_t}{\kappa_t}\right),$$

the two fractions are related as $\left|f_{CP}^{Htt}\right| = \left[1 + 2.38\left(\frac{1}{|f_{a3}^{ggH}|} - 1\right)\right]^{-1}$

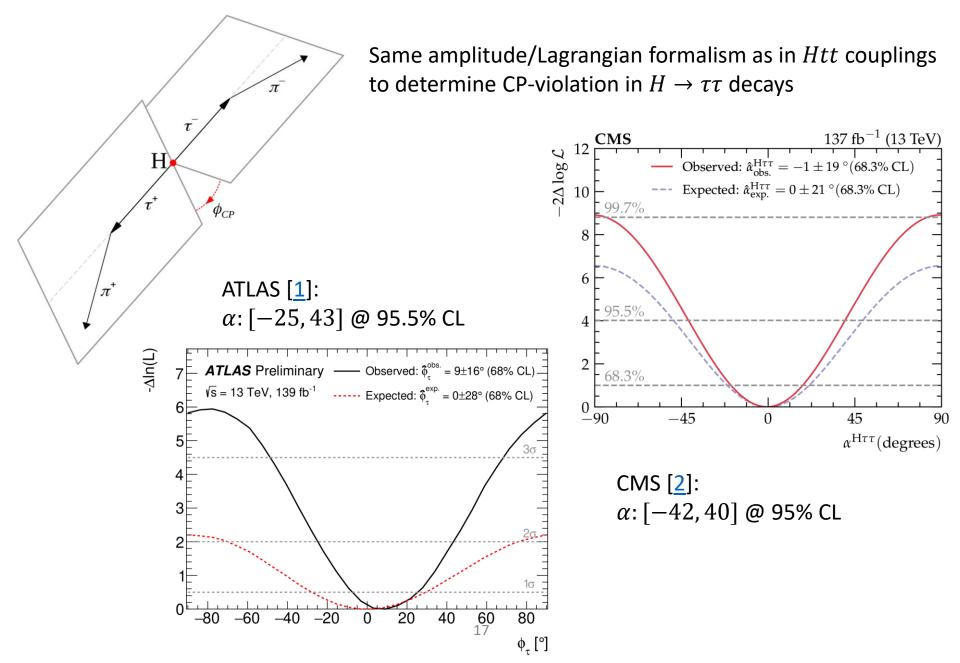
Anomalous spin-0 couplings: Hgg/Htt



Parameter	Observed		Expected			
	68% CL 95% CL		68% CL	95% CL		
f_{a3}^{ggH}	$0.07\substack{+0.32 \\ -0.07}$	[-0.15, 0.89]	0.00 ± 0.26			
$f_{CP}^{\rm Htt}$	$0.03\substack{+0.17 \\ -0.03}$	[-0.07, 0.51]	0.00 ± 0.12	[-0.49, 0.49]		

→ Another CMS analysis of multilepton $t\bar{t}H + tH$ final states combines with the 4ℓ and $\gamma\gamma$ channels: $\left|f_{CP}^{Htt}\right| < 0.73 @ 95\%$ CL [3]

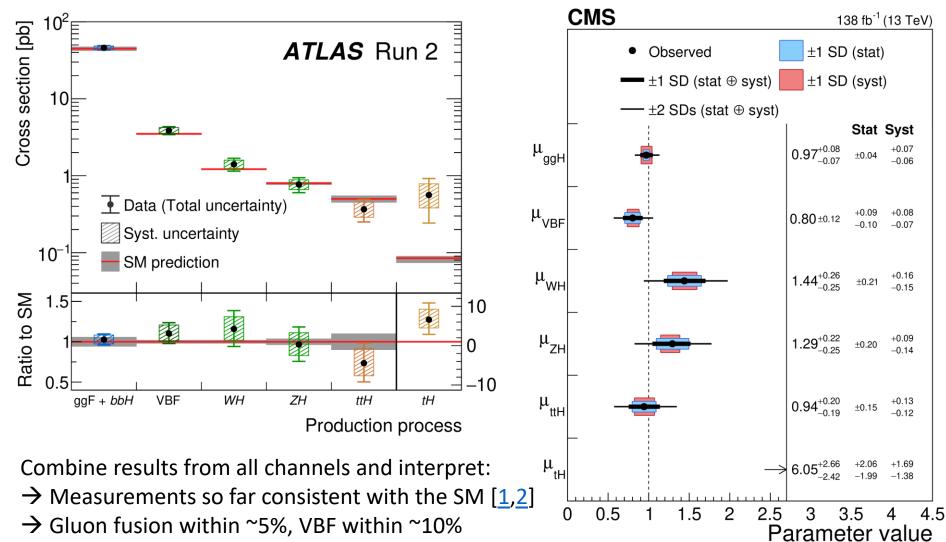
Anomalous spin-0 couplings: Hgg/Htt



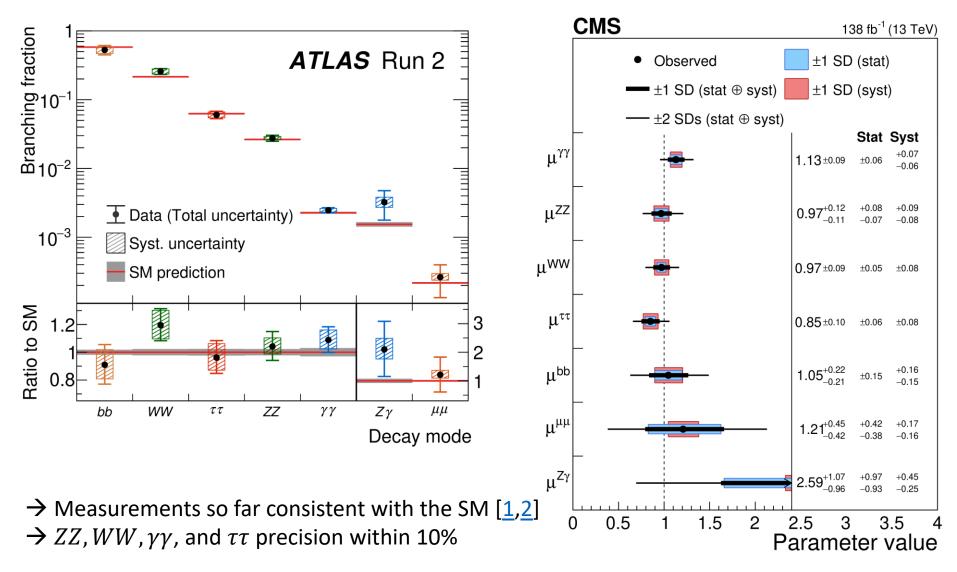
→ Hgg CP mixing angle: Run 2 2016 $WW \rightarrow e\nu_e \mu \nu_\mu$ data from ATLAS: |tan α | < 0.5 @ 68% CL [1] ($|f_{CP}^{ggH}|$ < 0.2 in CMS language)

→ *Htt* CP mixing angle Run 2 $t\bar{t}H$, $H \rightarrow \gamma\gamma$ data from ATLAS: $|\alpha| < 43^{\circ}$ @ 95% CL [2] ($|f_{CP}^{Htt}| < 0.47$ in CMS language)

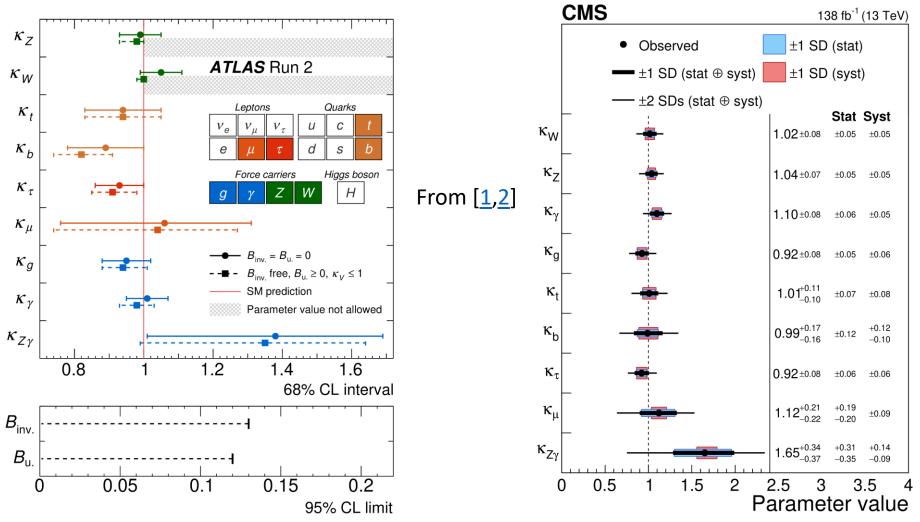
→ Also Run 2 $t\bar{t}H, H \rightarrow b\bar{b}$ data from ATLAS: $|\alpha| < 66^{\circ} @ 68\%$ CL [3] ($|f_{CP}^{Htt}| < 0.83$ in CMS language)


Anomalous spin-0 couplings: Ηττ

The Higgs boson is predominantly a CP-even spin-0 particle as prescribed in the SM.

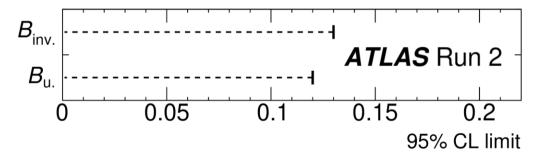

Let's examine its couplings closer for the SM-like tensor structure...

Constraints on production modes



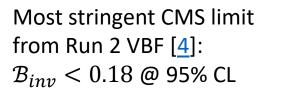
→ Consistent excess in tH, but large uncertainty due to small xsec and $t\bar{t}H$ contamination

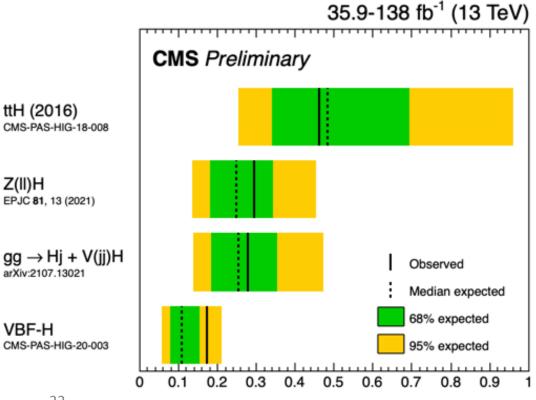
Constraints on visible decays


Interpretation in terms of couplings

 \rightarrow HZZ, HWW, H $\tau\tau$, and effective coupling modifiers for H $\gamma\gamma$, Hgg measured to 10%

→ ATLAS also presents constraints with invisible and undetected branching ratios. (see comparison on next slide)

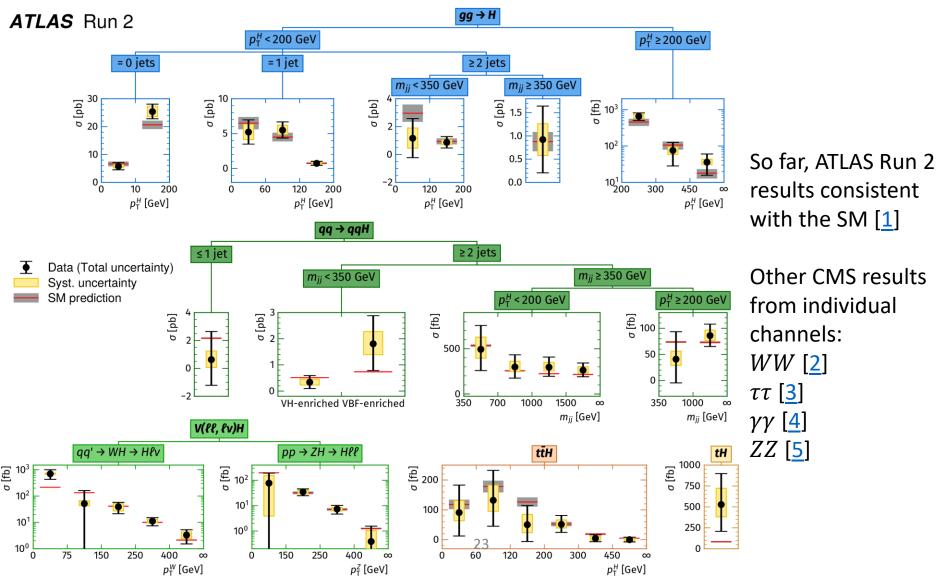

$H \rightarrow \text{invisible limits}$


From Ref. [1], based on Run 2 $H \rightarrow inv. data:$ $\mathcal{B}_{inv} < 0.15$ from VBF [2] and $\mathcal{B}_{inv} < 0.19$ from $Z(\rightarrow \ell \ell) H$ [3]

ATLAS invisible and undetected branching ratio result

from combination of all channels: $\mathcal{B}_{inv} < 0.13$ and $\mathcal{B}_{v} < 0.12$ at 95% CL (assuming $\kappa_Z, \kappa_W \leq 0$)

Other CMS $H \rightarrow inv.$ interpretations: $t\bar{t}H$ [5]: < 0.46 $Z(\to \ell \ell) H$ [6]: < 0.29 $gg \rightarrow Hj, V(\rightarrow jj)H$ [7]: < 0.28



Z(II)H

VBF-H

Beyond couplings: STXS (1.2)

The idea is to split production modes finer in specific final states, p_T^H , or m_{jj} and measure the cross section for each 'production bin'.

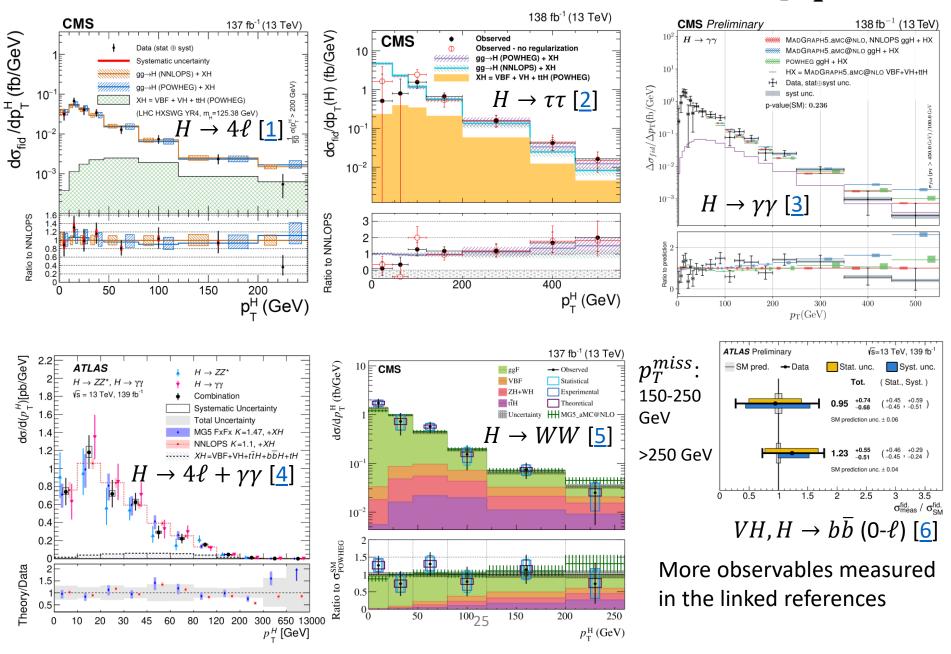
Beyond couplings: Fiducial differential xsecs

 \rightarrow Another way to go beyond simple coupling constants is to measure the aggregate Higgs boson production xsec in bins of $p_{\rm T}^H$, y_H or other kinematic variables within a fiducial selection volume.

\rightarrow Example fiducial volume from CMS 4 ℓ analysis:

Requirements for the $\mathrm{H} ightarrow 4\ell$ fiducial phase spa	ace
Lepton kinematics and isolation	
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20{ m GeV}$
Next-to-leading lepton $p_{\rm T}$	$p_{\rm T} > 10{ m GeV}$
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)

Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton Event topology


 $< 0.35 p_{\rm T}$

Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above Inv. mass of the Z_1 candidate $40 < m_{Z_1} < 120 \,\text{GeV}$ $12 < m_{Z_2} < 120 \,\text{GeV}$ Inv. mass of the Z_2 candidate $\Delta R(\ell_i, \ell_i) > 0.02$ for any $i \neq j$ Distance between selected four leptons $m_{\ell+\ell'^-} > 4 \,\mathrm{GeV}$ Inv. mass of any opposite sign lepton pair Inv. mass of the selected four leptons $105 < m_{4\ell} < 140 \, \text{GeV}$

 \rightarrow Higgs boson production outside of the fiducial volume is 'background'.

 \rightarrow Measure true cross section after unfolding, and efficiency and acceptance corrections.

Example fid. xsecs differential in p_{T}^{H}

All measurements of Higgs boson couplings in production and decay seem consistent with the SM for now.

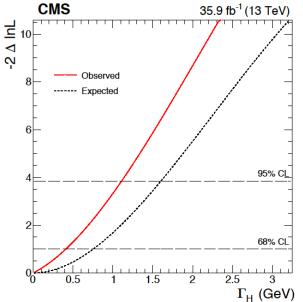
Let's examine the last piece in our properties investigation, the lifetime of the Higgs boson...

Higgs boson width/lifetime

CMS

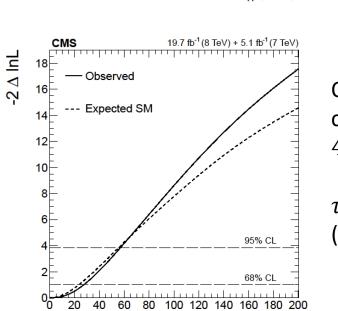
250

200


150

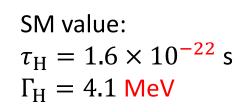
100

50


80

Events / 2 GeV

Best width upper bounds from on-shell mass spectra comes from CMS 4ℓ [1]:


 $\Gamma_{
m H} < 1.1~{
m GeV} \ (au_{
m H} > 6.0 imes 10^{-25}~{
m s})$

ст_н (μm)

Only lifetime upper bound comes from CMS on-shell 4ℓ displacement [2]:

 $\tau_{\rm H} < 1.9 \times 10^{-13} \text{ s}$ ($\Gamma_{\rm H} > 3.5 \times 10^{-12} \text{ GeV}$)

120

100

137 fb⁻¹ (13 TeV)

Data H(125)

Z+X

140

 $q\overline{q} \rightarrow ZZ, Z\gamma^*$

gg→ZZ, Zγ*

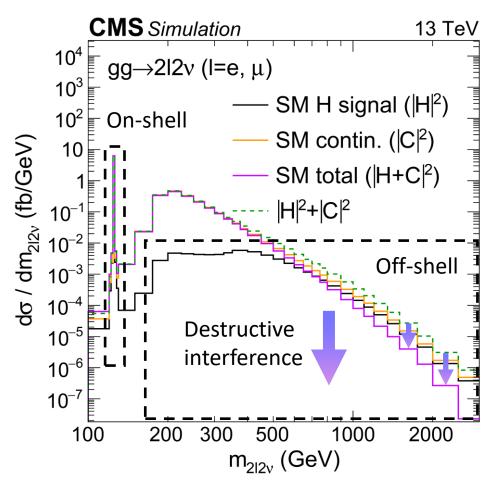
On-shell

 4ℓ mass

m_{4/} (GeV)

Out of reach of either method in precision!

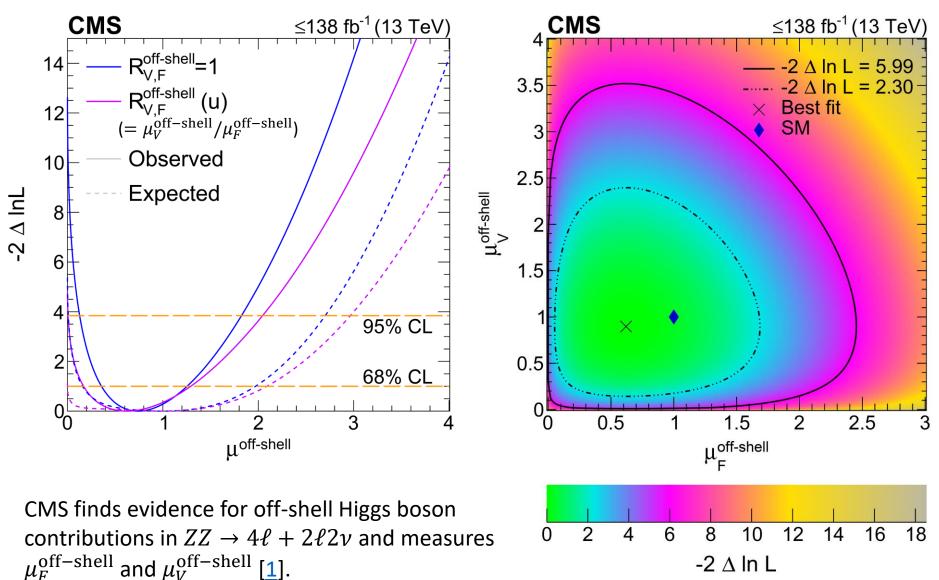
Off-shell Higgs boson production


In $H \rightarrow VV$ (V = Z, W), $m_V < m_H < 2m_V$: \rightarrow Either H is on-shell and one V is off-shell, or H is off-shell and both Vs are on-shell

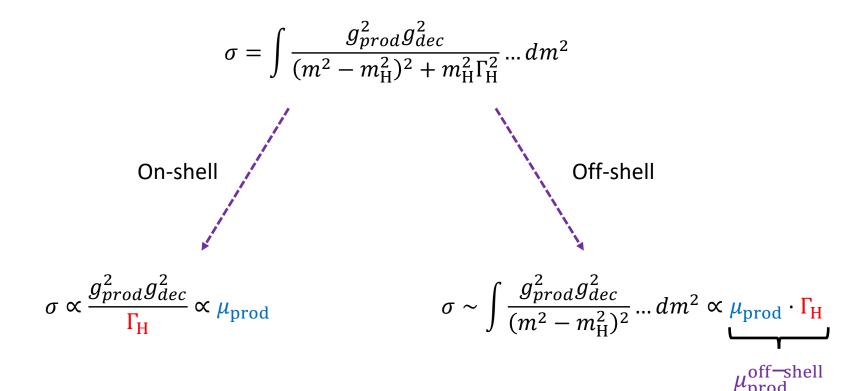
→ Both Vs going on-shell allows $\sim 10\%$ of events in the SM to produce an off-shell Higgs boson [1]

Possible to measure two off-shell production mechanisms:

- $\mu_F^{\text{off-shell}}(gg)$ - $\mu_V^{\text{off-shell}}$ (EW H + 2 jets)

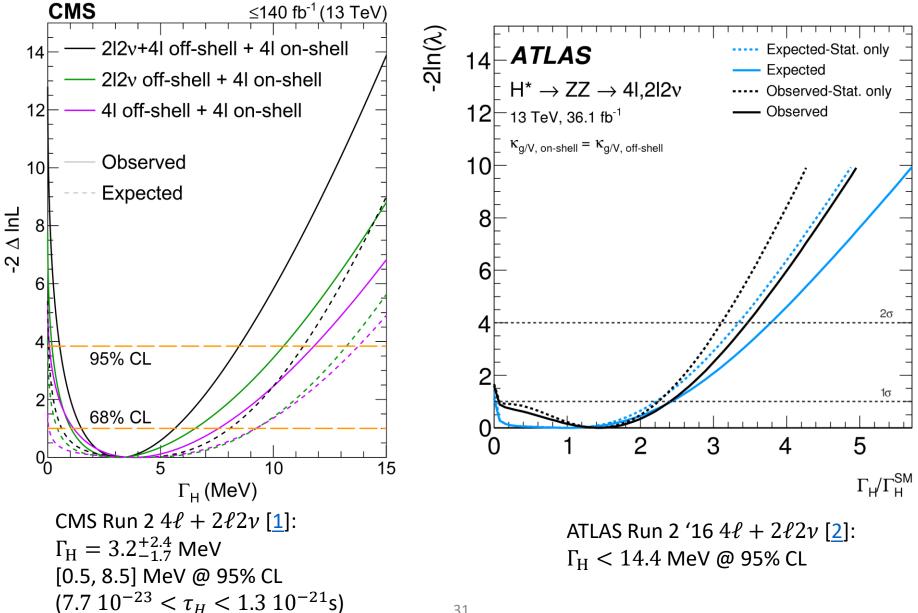

- Can also measure overall $\mu^{\text{off-shell}}$

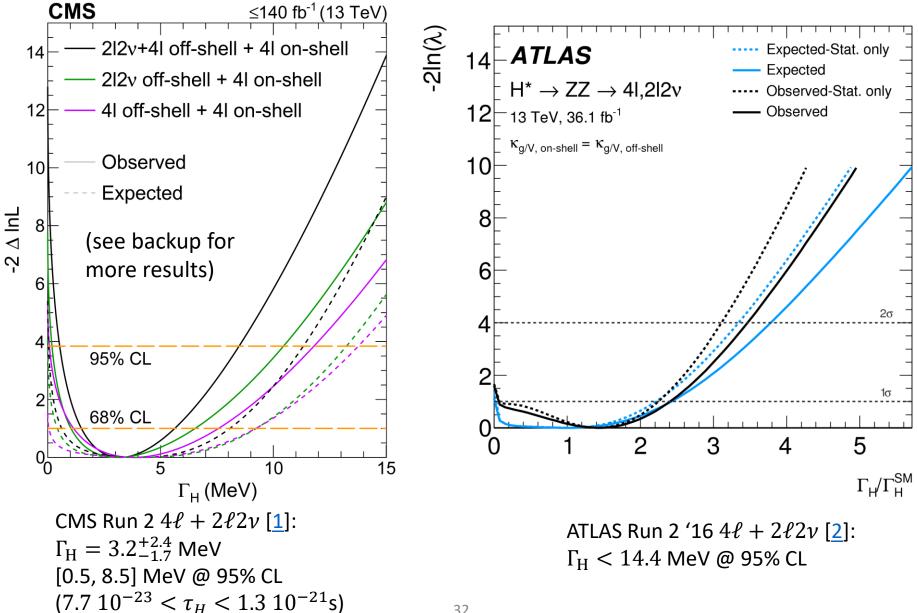
Higgs-mediated diagrams interfere destructively with continuum VV production:


- \rightarrow Large in magnitude
- ightarrow ~Twice the size of the Higgs signal
- \rightarrow Necessary in the SM to ensure unitarity

Off-shell Higgs boson production

Higgs boson width from off-shell


Combine with on-shell signal strength measurement to extract $\Gamma_{\rm H}$ [1]:


Measure on-shell signal strength from final states ZZ or WW

Ratio of off-shell to on-shell signal strengths for each production mode gives $\Gamma_{\!H}$

Higgs boson width from off-shell

Higgs boson width from off-shell

Many exciting results from ATLAS and CMS to understand Higgs boson properties.

Excellent progress in exploiting kinematic information, more progress in the horizon.

No new physics yet, but great precision already being achieved.

Stay tuned for more exciting results as we enter the LHC Run 3 era!

References

CERN Yellow Report 4: https://cds.cern.ch/record/2227475 CERN Yellow Report 3: http://cds.cern.ch/record/1559921 ATLAS and CMS LHC Run 1 4 ℓ + $\gamma\gamma$ mass: https://doi.org/10.1103/PhysRevLett.114.191803 CMS LHC Run 1 + Run 2 '16 $4\ell + \gamma\gamma$ mass: https://doi.org/10.1016/j.physletb.2020.135425 ATLAS LHC Run 1 + Run 2 2016-2018 4 mass: https://cds.cern.ch/record/2814431 S. Bolognesi et al., "Spin and parity of a single-produced resonance at the LHC": https://doi.org/10.1103/PhysRevD.86.095031 I. Anderson et al., "Constraining anomalous HVV interactions at proton and lepton colliders": https://doi.org/10.1103/PhysRevD.89.035007 CMS LHC Run 1 spin-parity: https://doi.org/10.1103/PhysRevD.92.012004 ATLAS LHC Run 1 spin-parity: https://doi.org/10.1140/epjc/s10052-015-3685-1 CMS LHC Run 2 $4\ell + \tau\tau$ anomalous HVV couplings: https://cds.cern.ch/record/2809135 CMS LHC Run 2 4^l anomalous HVV couplings: https://doi.org/10.1103/PhysRevD.104.052004 ATLAS LHC Run 1 ZZ + WW anomalous HVV couplings: https://cds.cern.ch/record/2809135 ATLAS LHC Run 2 2016 VBF $\tau\tau$ anomalous HVV couplings: https://doi.org/10.1016/j.physletb.2020.135426 ATLAS LHC Run 2 VBF $\gamma\gamma$ anomalous HVV couplings: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-08/ CMS LHC Run 1 + Run 2 2016 $t\bar{t}H$ observation: <u>https://doi.org/10.1103/PhysRevLett.120.231801</u> ATLAS LHC Run 1 + Run 2 2016-2017 $t\bar{t}H$ observation: https://doi.org/10.1016/j.physletb.2018.07.035 CMS LHC Run 2 $t\bar{t}H$ production and CP: <u>https://doi.org/10.1103/PhysRevLett.125.061801</u> CMS LHC Run 2 $t\bar{t}H + tH$ multilepton production and CP: https://cds.cern.ch/record/2803420 ATLAS LHC Run 2 2016 WW + jj CP and properties: https://doi.org/10.1140/epjc/s10052-022-10366-1 ATLAS LHC Run 2 $t\bar{t}H + tH, H \rightarrow \gamma\gamma$ CP: <u>https://doi.org/10.1103/PhysRevLett.125.061802</u> ATLAS LHC Run 2 $t\bar{t}H + tH, H \rightarrow b\bar{b}$ CP: <u>https://cds.cern.ch/record/2805772</u> ATLAS LHC Run 2 $\tau\tau$ CP: https://cds.cern.ch/record/2809728 CMS LHC Run 2 *ττ* CP: https://doi.org/10.1007/JHEP06(2022)012

References

ATLAS LHC Run 2 couplings combination: https://doi.org/10.1038/s41586-022-04893-w CMS LHC Run 2 couplings combination: https://doi.org/10.1038/s41586-022-04892-x ATLAS LHC Run 2 VBF $H \rightarrow$ invisible: https://cds.cern.ch/record/2801694 ATLAS LHC Run 2 $Z(\rightarrow \ell \ell)H \rightarrow$ invisible: https://doi.org/10.1016/j.physletb.2022.137066 CMS LHC Run 2 VBF $H \rightarrow$ invisible: https://doi.org/10.1103/PhysRevD.105.092007 CMS LHC Run 2 2016 $t\bar{t}H \rightarrow$ invisible: https://cds.cern.ch/record/2668677 CMS LHC Run 2 $Z(\rightarrow \ell \ell)H \rightarrow$ invisible: https://doi.org/10.1140/epic/s10052-020-08739-5 CMS LHC Run 2 $gg \rightarrow Hj, V(\rightarrow jj)H, H \rightarrow \text{invisible: https://doi.org/10.1007/JHEP11(2021)153}$ CMS LHC Run 2 WW cross sections: https://cds.cern.ch/record/2812784 CMS LHC Run 2 $\tau\tau$ cross sections: https://cds.cern.ch/record/2807752 CMS LHC Run 2 $\gamma\gamma$ cross sections: https://doi.org/10.1007/JHEP07(2021)027 CMS LHC Run 2 4² cross sections: https://doi.org/10.1140/epic/s10052-021-09200-x CMS LHC Run 2 $\tau\tau$ fiducial cross sections: https://doi.org/10.1103/PhysRevLett.128.081805 CMS LHC Run 2 $\gamma\gamma$ fiducial cross sections: https://cds.cern.ch/record/2803740 ATLAS LHC Run 2 $4\ell + \gamma\gamma$ cross sections: https://doi.org/10.48550/arXiv.2207.08615 CMS LHC Run 2 WW fiducial cross sections: https://doi.org/10.1007/JHEP03%282021%29003 ATLAS LHC Run 2 VH, $H \rightarrow b\bar{b}$ (0- ℓ) fiducial cross sections: http://cds.cern.ch/record/2805712 CMS LHC Run 2 2016 4^l cross sections and mass: https://doi.org/10.1007/JHEP11(2017)047 CMS LHC Run 1 4 lifetime: https://doi.org/10.1103/PhysRevD.92.072010 N Kauer and G. Passarino, "Inadequacy of zero-width approximation for a light Higgs boson signal": https://doi.org/10.1007/JHEP08(2012)116 CMS LHC Run 2 $ZZ \rightarrow 4\ell + 2\ell 2\nu$ off-shell analysis: <u>https://cds.cern.ch/record/2801541</u>

ATLAS LHC Run 2 2016 $ZZ \rightarrow 4\ell + 2\ell 2\nu$ off-shell analysis: <u>https://doi.org/10.1016/j.physletb.2018.09.048</u>

Back-up

Anomalous HVV couplings from on-shell 4ℓ

Parameter	Scenario		Observed	Expected
f_{a3}	Approach 1 $f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00004 \\ [-0.00007, 0.00044] \\ [-0.00055, 0.00168] \\ -0.00805 \\ [-0.02656, 0.00034] \\ [-0.07191, 0.00990] \\ 0.00005 \\ [-0.00010, 0.00061] \\ [-0.00072, 0.00218] \end{array}$	$\begin{array}{c} 0.00000 \\ [-0.00081, 0.00081] \\ [-0.00412, 0.00412] \\ 0.00000 \\ [-0.00086, 0.00086] \\ [-0.00423, 0.00422] \\ 0.0000 \\ [-0.0012, 0.0012] \\ [-0.0057, 0.0057] \end{array}$
f_{a2}	Approach 1 $f_{a3} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a3}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL	$\begin{array}{l} 0.00020\\ [-0.00010, 0.00109]\\ [-0.00078, 0.00368]\\ -0.24679\\ [-0.41087, -0.15149]\\ \cup [-0.00008, 0.00065]\\ [-0.66842, -0.08754]\\ \cup [-0.00091, 0.00309]\\ -0.00002\\ [-0.00178, 0.00103]\\ [-0.00694, 0.00536]\end{array}$	$\begin{array}{c} 0.0000 \\ [-0.0012, 0.0014] \\ [-0.0075, 0.0073] \\ 0.0000 \\ [-0.0017, 0.0014] \\ [-0.0082, 0.0073] \\ 0.0000 \\ [-0.0060, 0.0033] \\ [-0.0206, 0.0131] \end{array}$
$f_{\Lambda 1} \left\{ \left. \right. \right. \right\}$	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float f_{a3}, f_{a2}	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00004 \\ [-0.00002, 0.00022] \\ [-0.00014, 0.00060] \\ 0.18629 \\ [-0.00002, 0.00019] \\ \cup [0.07631, 0.27515] \\ [-0.00523, 0.35567] \\ 0.00012 \\ [-0.00021, 0.00141] \\ [-0.00184, 0.00443] \end{array}$	0.00000 [-0.00016,0.00026] [-0.00069,0.00110] 0.00000 [-0.00017,0.00036] [-0.00076,0.00134] 0.0000 [-0.0013,0.0030] [-0.0056,0.0102]
$f_{\Lambda 1}^{Z\gamma} \left\{ ight.$	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{c} -0.00001 \\ [-0.00099, 0.00057] \\ [-0.00387, 0.00301] \\ -0.02884 \\ [-0.09000, -0.00534] \\ \cup [-0.00068, 0.00078] \\ [-0.29091, 0.03034] \end{array}$	0.0000 [-0.0026, 0.0020] [-0.0096, 0.0082] 0.0000 [-0.0037, 0.0026] [-0.0099, 0.0096]

\rightarrow Results from [1]

→ Approach 1 fixes or unconstrains couplings without assuming any relationship between each other.

→ Approach 2 assumes Λ_1 and $\Lambda_1^{Z\gamma}$ couplings are determined by the combination of a_1 and a_2 couplings according to SMEFT relations.

Fiducial volume in ATLAS 4ℓ

	Lepton and jet definitions
Leptons	Dressed leptons not originating from hadron or τ decays
	$p_{\rm T} > 5 { m GeV}, \eta < 2.7$
Jets	$p_{\rm T} > 30 {\rm GeV}, y < 4.4$
	Lepton selection and pairing
Lepton kinematics	$p_{\rm T}$ threshold for three leading leptons: > 20, 15, 10 GeV
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $
Subleading pair (m_{34})	Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $ as nominal
	Event selection
Mass requirements	50 GeV < m_{12} < 106 GeV and 12 GeV < m_{34} < 115 GeV
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$
Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$
If extra lepton with $p_{\rm T} > 12 \text{ GeV}$	Quadruplet with largest ggF matrix element value

Fiducial volume in ATLAS $\gamma\gamma$

	Photon and jet definitions
Photons	Photons not originating from hadron decays
	$p_{\rm T} > 15$ GeV, $ \eta < 1.37$ or $1.52 < \eta < 2.37$
	$E_{\rm T}^{\rm iso}(\Delta R < 0.2, p_{\rm T} > 1 \text{ GeV}, \text{ charged}) < 0.05 E_{\rm T}$
Jets	$p_{\rm T} > 30 {\rm ~GeV}, y < 4.4$
	Event selection
	$p_{\rm T}$ threshold for two leading photons: $p_{\rm T}^{\gamma_1} > 0.35 m_{\gamma\gamma}, p_{\rm T}^{\gamma_2} > 0.25 m_{\gamma\gamma}$
Mass window	$105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$

Fiducial volume in ATLAS $b\overline{b}$

Selection	Detector-level	Particle-level				
	No electrons or muons $p_{\rm T} > 7 {\rm GeV}$ Electrons Muons	No electrons or muons				
Leptons	$\begin{array}{c c} \eta < 2.47 & \eta < 2.7 \\ \text{LooseLH} & \text{Loose} \end{array}$	$\begin{array}{c} p_{\rm T} > 7 {\rm GeV} \\ {\rm Electrons} & {\rm Muons} \end{array}$				
	$\begin{array}{l} d_0/\sigma_{d_0} < 5 \qquad d_0/\sigma_{d_0} < 3 \\ z_0 \sin \theta < 0.5 \mathrm{mm} \qquad z_0 \sin \theta < 0.5 \mathrm{mm} \\ \mathrm{Loose \ track-isolation} \end{array}$	$ \eta < 2.47$ $ \eta < 2.7$				
Hadronic τ	$p_{ m T} > 20 { m GeV} \ \eta < 1.37 \text{ or } 1.52 < \eta < 2.5 \ { m Medium}$	τ -labelled central jets				
Anti- $k_t\ R=0.4$ Jets	$\begin{array}{ll} \mbox{From topological clusters} \\ \geq 2 \mbox{ central jets} \\ \mbox{Central} & \mbox{Forward} \end{array}$	$\begin{array}{l} \mbox{From collider-stable particles} \\ \geq 2 \mbox{ central jets} \\ \mbox{Central} & \mbox{Forward} \end{array}$				
b-jets	$\begin{array}{ll} p_{\mathrm{T}} > 20 \ \mathrm{GeV} & p_{\mathrm{T}} > 30 \ \mathrm{GeV} \\ \eta < 2.5 & 2.5 < \eta < 4.5 \\ 2 \ b\text{-tagged central jets, MV2} (70\% \ \mathrm{efficiency}) \\ \mathrm{At \ least \ one} \ b\text{-jet \ with} \ p_{\mathrm{T}} > 45 \ \mathrm{GeV} \end{array}$	$\begin{array}{ll} p_{\mathrm{T}} > 20 \ \mathrm{GeV} & p_{\mathrm{T}} > 30 \ \mathrm{GeV} \\ \eta < 2.5 & 2.5 < \eta < 4.5 \\ 2 \ b\text{-labelled central jets} \\ \mathrm{At \ least \ one \ b-labelled \ jet \ with \ } p_{\mathrm{T}} > 45 \ \mathrm{GeV} \end{array}$				
Jet categories	Two, with exactly 2 and 3 jets	At least one <i>b</i> -habined jet with $p_{\rm T} > 45 {\rm GeV}$ One, with 2 or 3 jets				
Overlap removal	Between e, μ, τ and jets	Remove e/μ within $\Delta R = 0.4$ of a jet, remove τ -labelled jets				
$E_{\rm T}^{\rm miss}$	Negative vectorial sum of $p_{\rm T}$ of jets, leptons, taus and photons plus a track-based soft term $> 150 {\rm GeV}$	Negative vectorial sum of $p_{\rm T}$ of all stable interacting particles with $ \eta < 5$, including muons with $p_{\rm T} > 6 {\rm GeV}$ $> 150 {\rm GeV}$				
$ \begin{array}{c} H_{\rm T} \\ \min \Delta \phi(\vec{E}_{\rm T}^{\rm miss},\vec{j}) \\ \Delta \phi(\vec{E}_{\rm T}^{\rm miss},\vec{b}_1+\vec{b}_2) \end{array} $	> 120 GeV (2 jets), > 150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120°	> 120 GeV (2 jets), > 150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120°				
$ \begin{array}{l} \Delta \phi(E_{\mathrm{T}}^{-},b_{1}^{-}+b_{2}^{-}) \\ \Delta \phi(\vec{b}_{1},\vec{b}_{2}) \\ \Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},\vec{p}_{\mathrm{T}}^{\mathrm{miss}}) \end{array} $	$< 140^{\circ}$ $< 90^{\circ}$	$< 140^{\circ}$ -				
$E_{\rm T}^{\rm miss}$ regions	$\begin{array}{l} 150{\rm GeV} \leq E_{\rm T}^{\rm miss} < 250{\rm GeV} \\ E_{\rm T}^{\rm miss} \geq 250{\rm GeV} \end{array}$	$\begin{array}{l} 150{\rm GeV} \leq E_{\rm T}^{\rm miss} < 250{\rm GeV} \\ E_{\rm T}^{\rm miss} \geq 250{\rm GeV} \end{array}$				

Fiducial volume in CMS 4ℓ

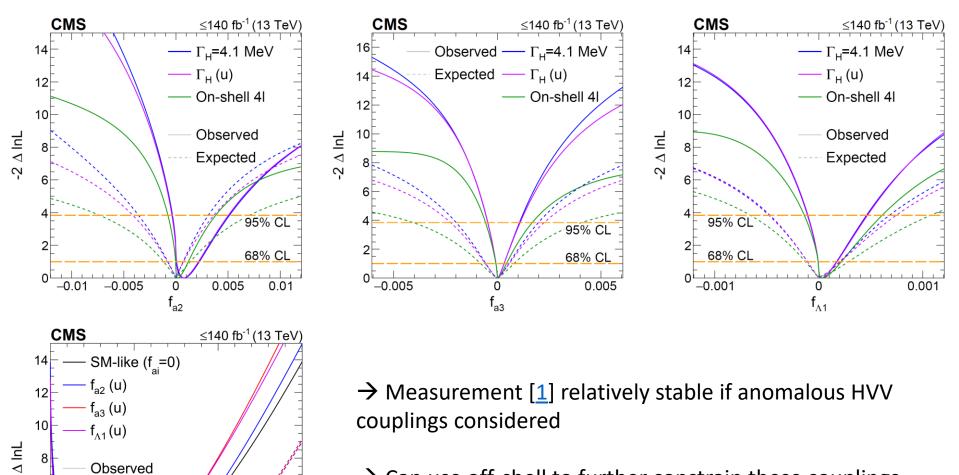
Requirements for the $H ightarrow 4\ell$ fiducial phase space					
Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$				
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10\mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\mathrm{T}} > 7(5) \mathrm{GeV}$				
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)				
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{ m T}$				
Event topology					
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above					
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$				
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$				
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$				
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$				
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{\rm GeV}$				

Fiducial volume and obs. in CMS $\gamma\gamma$

Phase Space Region	Observable			1	Bin bou	ndarie			
	$p_{\mathrm{T}}^{\gamma\gamma}$	0	5	10	15	20	25	30	35
		45	60	80	100	120	140	170	200
		250	350	450	∞				
	n _{jets}	0	1	2	3	≥ 4			
	$ y^{\gamma\gamma} $	0.0	0.1	0.2	0.3	0.45	0.6	0.75	0.90
Baseline		2.5	0.07	0.15	0.00	0.05	0.45	0 55	0.77
$p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 1/3$	$ \cos{(heta^*)} $	$0.0 \\ 1.0$	0.07	0.15	0.22	0.35	0.45	0.55	0.75
$p_{\mathrm{T}}^{\gamma_2}/m_{\gamma\gamma} > 1/4$	$ \phi^*_\eta $	0.0	0.05	0.1	0.2	0.3	0.4	0.5	0.7
$ \eta^{\gamma} < 2.5$	$ \Psi\eta $	1.0	1.5	0.1	0.2	0.0	0.4	0.5	0.7
$\mathcal{I}_{\text{gen}}^{\gamma} < 10 \text{GeV}$		2.5	4.0	∞					
Berr	$p_{\mathrm{T}}^{\gamma\gamma}$, $n_{jets}=0$	0	5	10	15	20	25	30	35
	- ,	45	60	∞					
	$p_{\rm T}^{\gamma\gamma}$, $n_{iets} = 1$	0	30	60	100	170	∞		
	$p_{\mathrm{T}}^{\gamma\gamma}, n_{jets} = 1 \ p_{\mathrm{T}}^{\gamma\gamma}, n_{jets} > 1$	0	100	170	250	350	∞		
	n_{jets}^{b}	0	1	≥ 2					
	ⁿ leptons	0	1	≥ 2					
	$p_{\rm T}^{\rm miss}$	0	30	50	100	200	∞		
	$p_{\mathrm{T}}^{\mathbf{j}_{1}}$	30	40	55	75	95	120	150	200
		~	0.0	0.6	0.0	1.0	1.6	2.0	o -
1-jet	$ y^{j_1} $	0.0 0.0	0.3 2.0	0.6 2.6	0.9 2.85	1.2 3.0	1.6 3.07	2.0	2.5
Baseline + \geq 1 jet	$ \Delta \phi_{\gamma\gamma,j_1} $	0.0	2.0 0.3	2.6 0.6	2.85 1.0	1.4	3.07 1.9	π 2.5	∞
$p_{\rm T}^{\rm j} > 30 {\rm ~GeV}$	$ \Delta y_{\gamma\gamma,j_1} $								00
$ \eta^{j} < 2.5$	$ au_{ m C}^{j} au_{ m Cj}^{\gamma\gamma}, au_{ m Cj} < 15 { m ~GeV}$	< 15	15	20	30	50	80	∞	
	p_{T}^{\prime} , τ_{Cj} < 15 GeV	0	45	120	∞				
	$p_{\mathrm{T}}^{\gamma\gamma}$, 15 GeV $\leq \tau_{\mathrm{C}}^{\mathrm{J}} < 25$ GeV	0	45	120	∞				
	$p_{\rm T}^{\gamma\gamma}$, 25 GeV $\leq \tau_{\rm C}^{\rm J} < 40$ GeV	0	120	∞					
	$p_{\mathrm{T}}^{\gamma\gamma}$, 40 GeV $\leq \tau_{\mathrm{C}}^{\mathrm{J}}$	0	200	350	∞				
	$p_{\mathrm{T}}^{l_2}$ $ y^{l_2} $	30	40	65	90	150	∞		
2-jets	$ \hat{y^{j_2}} $	0.0	0.6	1.2	1.8	2.5	3.5	5.0	
Baseline + \geq 2 jets	$ \Delta \phi_{\mathbf{j}_1,\mathbf{j}_2} $	0.0	0.5	0.9	1.3	1.7	2.5	π	
$p_{\rm T}^{\rm j} > 30 { m ~GeV}$	$ \Delta \phi_{\gamma\gamma,j_1j_2} $	0.0	2.0	2.7	2.95	3.07	π		
$ \eta^j < 4.7$	$ \bar{\eta}_{j_1 j_2} - \eta_{\gamma \gamma} = m^{1}$	0.0	0.2	0.5	0.85	1.2	1.7	∞	
$ \eta < 10$		0	75	120	180	300	500	1000	∞
	$ \Delta \eta_{j_1 j_2} $	0.0	0.7	1.6	3.0	5.0	∞		
VBF-enriched	$\begin{array}{c} \Delta \eta_{j_1 j_2} \\ \hline p_T^{\gamma\gamma} \\ p_T^{l_2} \\ \Delta \phi_{j_1, j_2} \\ \Delta \phi_{\gamma\gamma, j_1 j_2} \end{array}$	0	30	60	120	200	∞		
2-jets + $n_{\text{jets}} \ge 2$	$p_{\mathrm{T}}^{\mathbf{j}_2}$	30	40	65	90	150	∞		
$\Delta \eta^{\rm jj} > 3.5$	$ \Delta \phi_{j_1,j_2} $	0.0	0.5	0.9	1.3	1.7	2.5	π	
$m^{\rm jj} > 200{ m GeV}$	$ \Delta \phi_{\gamma\gamma,j_1j_2} $	0.0	2.0	2.7	2.95	3.07	π		

Fiducial volume and obs. in CMS WW

Observable	Condition
Lepton origin	Direct decay of $H \rightarrow W^+W^-$
Lepton flavors; lepton charge	$e\mu$ (not from τ decay); opposite
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\rm T}^{l_2} > 13 { m GeV}$
$ \eta $ of leptons	$ \eta < 2.5$
Dilepton mass	$m^{ll} > 12 \mathrm{GeV}$
$p_{\rm T}$ of the dilepton system	$p_{\rm T}^{ll} > 30 { m GeV}$
Transverse mass using trailing lepton	$m_{\mathrm{T}}^{l_2} > 30 \mathrm{GeV}$
Higgs boson transverse mass	$m_{\mathrm{T}}^{\mathrm{\hat{H}}} > 60 \mathrm{GeV}$


Jet counting: All jets clustered with the anti- $k_{\rm T}$ algo. with $p_{\rm T}>30~{\rm GeV}$

Fiducial volume in CMS au au

Fiducial region definition:

→ Leptons include FSR within ΔR < 0.1 → $\mu \tau_h$: $p_T^{\mu} > 20$ GeV, $|\eta^{\mu}| < 2.1$, $p_T^{\tau_h} > 30$ GeV, $|\eta^{\tau_h}| < 2.3$, $m_T^{\ell} < 50$ GeV → $e \tau_h$: $p_T^{e} > 25$ GeV, $|\eta^{\mu}| < 2.1$, $p_T^{\tau_h} > 30$ GeV, $|\eta^{\tau_h}| < 2.3$, $m_T^{\ell} < 50$ GeV → $e \mu$: $p_T^{\ell_1(\ell_2)} > 24$ (15) GeV, $|\eta^{\ell}| < 2.4$, $m_T^{\ell\ell} < 60$ GeV, $p_T^{miss} < 60$ GeV → $\tau_h \tau_h$: $p_T^{\tau_h} > 40$ GeV, $|\eta^{\tau_h}| < 2.1$, should have at least one jet with $p_T > 30$ GeV

Anomalous spin-0 HVV couplings & off-shell

 \rightarrow Can use off-shell to further constrain these couplings

Ņ

6

4

2

0<u></u>

Expected

5

 $\Gamma_{\rm H}$ (MeV)

95% CL

68% CL

15

10

Anomalous spin-0 HVV couplings & off-shell

Parameter	Condition	Observed		Expected		
		Best fit	68% CL	95% CL	68% CL	95% CL
Г _Н (MeV)	SM-like	3.2	[1.5, 5.6]	[0.5, 8.5]	[0.6, 8.1]	[0.03, 11.3]
	f _{a2} (u)	3.4	[1.6, 5.7]	[0.6, 8.4]	[0.5, 8.0]	[0.02, 11.3]
	f _{a3} (u)	2.7	[1.3, 4.8]	[0.5, 7.3]	[0.5, 8.0]	[0.02, 11.3]
	f $_{\Lambda 1}$ (u)	2.7	[1.3, 4.8]	[0.5, 7.3]	[0.6, 8.1]	[0.02, 11.3]
f _{a2} (×10 ⁵)	$\Gamma_{H} = \Gamma_{H}^{SM}$ Γ_{H} (u)	79 72	[6.6, 225] [2.7, 216]	[–32, 514] [–38, 503]	[—78, 70] [—82, 73]	[—359, 311] [—413, 364]
f _{a3} (×10 ⁵)	$\Gamma_{H} = \Gamma_{H}^{SM}$ Γ_{H} (u)	2.2 2.4	[–6.4, 32] [–6.2, 33]	[—46, 107] [—46, 110]	[—55, 55] [—58, 58]	[—198, 198] [—225, 225]
$f_{\Lambda 1}~(imes 10^5)$	$\Gamma_{H} = \Gamma_{H}^{SM}$ Γ_{H} (u)	2.9 3.1	[–0.62, 17] [–0.56, 18]	[—11, 46] [—10, 47]	[—11, 20] [—11, 21]	[–47, 68] [–48, 75]

Width and anomalous HVV coupling constraints using off-shell information [1]