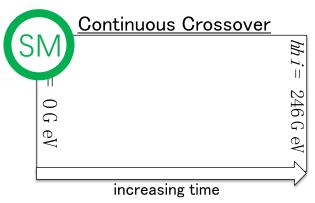

Shedding light on the electroweak phase transition from exotic Higgs boson decays at the lifetime frontiers

Wei Liu (刘威)

Nanjing University of Science and Technology Arxiv:2205. 08205, Phys.Rev.D 105 (2022) 11, 115040 Higgs Potential 2022


Phase transition in electroweak theory

EW symmetry restoration in the early Universe

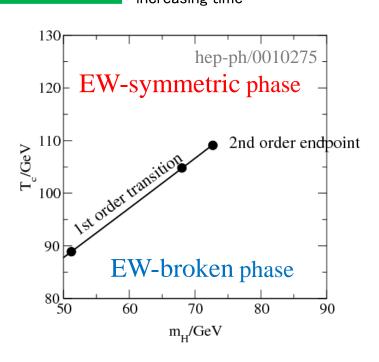
What is the pattern of EW phase transition

It could be –

or Similar Phase Transition

New Phy.

increasing time

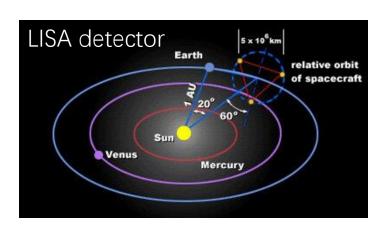

Figure from L.-T. Wang's talk in IHEP workshop

Lattice calculation shows the phase diagram ==>

Thus in the SM it is a crossover, since $M_h = 125 \text{ GeV} > 75 \text{ GeV}$;

However, a 1st-order EWPT is more interesting.

(Needs new physics)

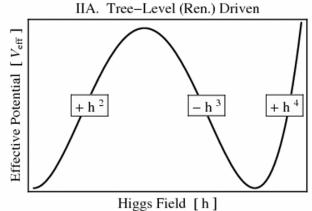


Why is a 1st-order EWPT interesting?

- It's the essential ingredient of the EW baryogenesis.
- Acting as the <u>background</u> of very rich **dark matter** mechanisms
- Sources of the stochastic GWs:

- Collision of the bubbles
- Sound waves in plasma
- Turbulance in plasma

EWPT GWs typically peak in mHz.



How to achieve a 1st-order EWPT?

Adding a barrier for the Higgs potential via new physics! The decay between two vacua separated by a barrier. The VEV of the Higgs field *jumps*.

Getting a barrier via the help of additional scalar field(s):

- SM + real singlet (xSM);
- 2HDM;
- Georgi-Machacek model;
- •

We choose the **xSM** as the benchmark model.

- It's simple, but has captured the most important feature of EWPT;
- It can be treated as the prototype of many new physics EWPT models.

EWPT in the xSM (SM + real singlet)

We choose the **xSM** as the benchmark model.

It's simple, but has captured the most important feature of EWPT.

The scalar potential of the xSM

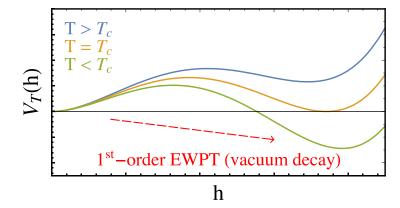
$$V = -\mu^{2}|H|^{2} + \lambda|H|^{4} + \frac{a_{1}}{2}|H|^{2}S + \frac{a_{2}}{2}|H|^{2}S^{2} + b_{1}S + \frac{b_{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$$

8 input parameters:

1 unphysical, 2 fixed by Higgs mass & VEV; 5 free parameters.

Expansion around the VEV

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}, \quad S = v_s + s, \quad \begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

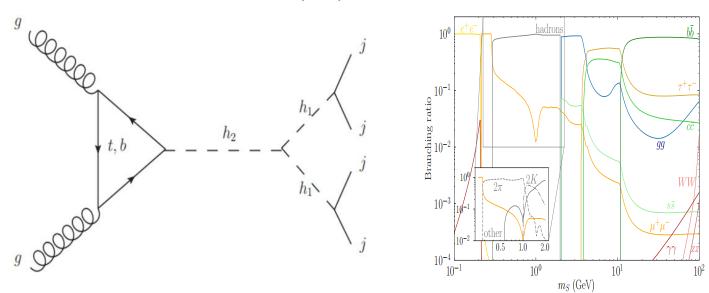

Mass eigenstates & the mixing angle.

1st-order EWPT in the xSM

At finite temperature:

$$V = -(\mu^2 - c_H T^2)|H|^2 + \lambda |H|^4 + \frac{a_1}{2}|H|^2 S + \frac{a_2}{2}|H|^2 S^2$$
$$+ (b_1 + m_1 T^2)S + \frac{b_2 + c_S T^2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4$$
$$c_H = \frac{3g^2 + g'^2}{16} + \frac{y_t^2}{4} + \frac{\lambda}{2} + \frac{a_2}{24}, \quad c_S = \frac{a_2}{6} + \frac{b_4}{4}, \quad m_1 = \frac{a_1 + b_3}{12}$$

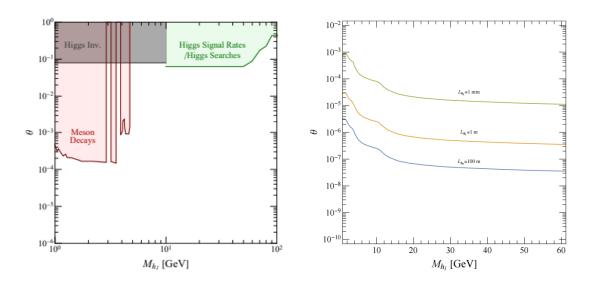
An Illustration --



Question:

Can <u>collider experiments</u> probe the 1st-order EWPT parameter space?

Production processes


$$gg \rightarrow h_{2(SM)} \rightarrow h_1 h_1 \rightarrow 4j$$

1st-order EWPT leads to large $BR(h_2 \rightarrow h_1 h_1)$. h_1 decays into jets dominantly.

Long-lived Particles

The current limits on (M_{h_1}, θ)

For M_{h_1} < 10 GeV, the current limits from rare meson decays at the LHCb, leads to h_1 as a long-lived particle (LLP).

Long-lived Particles

LLP is widely searched, of great interests experimentally and theoretically.

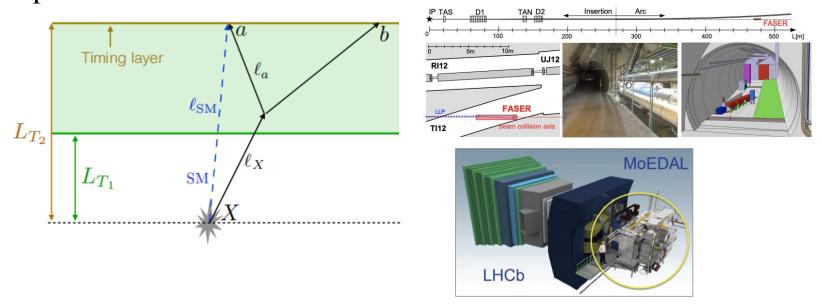
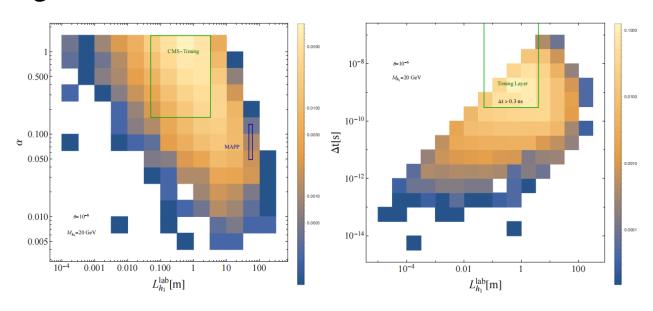

Figure from Albert De Roeck.

Figure from 2203.05090.

Light weakly-coupled particles as LLPs, are strongly motivated, including the light scalar responsible for 1st-order EWPT in the xSM.

Detectors for LLPs

CMS-Timing, FASER, MoEDAL-MAPP are to be operated at Run 3.

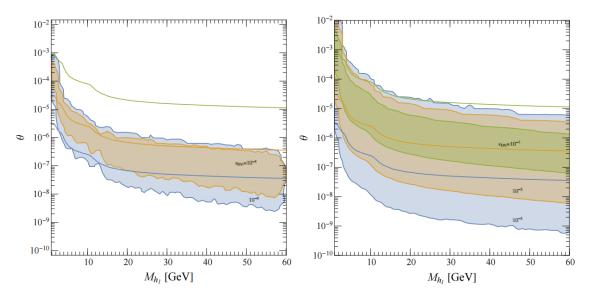


Many others, e.g. MATHUSLA and CODEX-b are in discussions.

CMS-Timing detector using the **time-delayed leptons/jets** as signals, while the other detectors using displaced vertex.

Detector efficiency

Detector efficiency is a function of geometrical coverage,


and resolution in time for timing detector.

CMS-Timing has large coverage, and good resolution.

MAPP has small coverage,
while negligible for FASER.

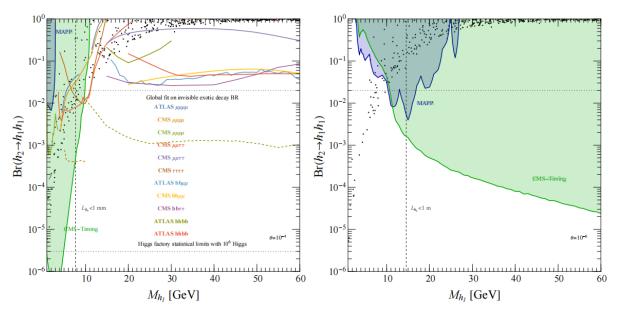
Detector efficiency

Detector efficiency is a function of geometrical coverage,

CMS-Timing has efficiency up to 10^{-1} . MAPP has 10^{-4} , while negligible for FASER.

Connects to 1st-order EWPT

Link between the number of events and 1st-order EWPT


$$\begin{split} & N_{signal} \\ &= \sigma_{pp \rightarrow h_2} \times L \times BR_{h_2 \rightarrow h_1 h_1} (a_2, M_{h_1}) \\ & \times BR_{h_1 \rightarrow jj}^2 (M_{h_1}) \times \epsilon_{kin} (M_{h_1}) \times \epsilon_{geo} (M_{h_1}, \theta) \end{split}$$

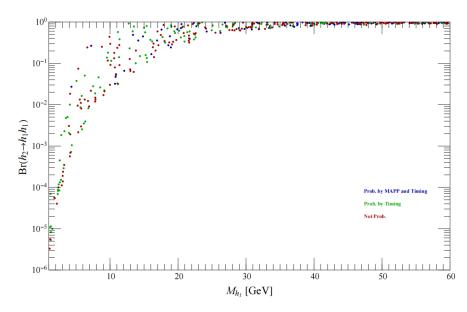
$$BR_{h_2 \to h_1 h_1}(a_2, M_{h_1}) = \frac{\Gamma_{h_2 \to h_1 h_1}}{\Gamma_{h_2}^{SM} + \Gamma_{h_2 \to h_1 h_1}}$$

 $\Gamma_{h_2 \to h_1 h_1} \propto (a_2 v)^2$

LLP events are sensitive to $|H|^2S^2$ couplings.

Sensitivity

Fixed $\theta = 10^{-4} (left), 10^{-6} (right).$

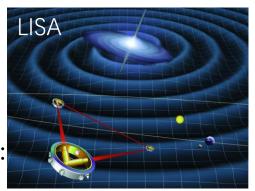


CMS-Timing can probe large parameter space where the searches for promptly exotic Higgs decays can not reach.

MAPP can only probe small parameter space, while none for FASER.

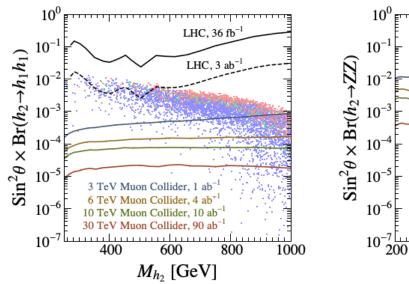
Signatures at Colliders

Running θ



Green points are probed by CMS-Timing, but not by MAPP.

CMS-Timing can probe a lot more 1st-order EWPT points. There are still appreciable points not probed by any of LLP detectors.


What if there is a TeV h_2 ?


1st-order EWPT can lead to **gravitational wave**, and diHiggs & diboson final states especially at **muon colliders!**

For the LISA detector, signal-to-noise ratio (SNR):

$$SNR = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left(\frac{\Omega_{GW}(f)}{\Omega_{LISA}(f)}\right)^2}$$

Wei Liu, Ke-pan Xie, JHEP 04 (2021) 015.

Conclusion

1st-order EW phase transition is interesting:

- Theoretically, it is the essential ingredient of EW baryogenesis, and can trigger very rich dark matter mechanisms;
- Experimentally, it yields detectable gravitational waves.

We propose strategies to probe 1st-order EWPT from LLP signatures at the HL-LHC.

For light, weakly coupled scalar corresponding to 1st-order EWPT, it can lead to LLP signatures, but no detectable gravitational waves.

LLP search is complementary to the searches for promptly exotic Higgs decays!