A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states with the ATLAS detector

Yue Xu Tsinghua University

Higgs Potential, 24-28 July, 2022

Introduction

- Many BSM predict heavy Higgs particles decaying to heavy quarks or bosons: 2HDM, MSSM...
- Production of heavy Higgs boson:
 - gluon-gluon fusion (ggF)
 - Vector-boson fusion (VBF)
 - Associated production with vector boson (VH)
- Theoretical study on model-independent heavy Higgs boson from Yu-Ping Kuang
 - ggF: $pp \rightarrow t\bar{t}t\bar{t}$ Physics Letters B 747 (2015) 193-199
 - VBF: $pp \to H^* j_1^f j_2^f \to VV j_1^f j_2^f \to \ell^+ \nu_\ell j_1 j_2 j_1^f j_2^f$ Physical Review D 90, 115002 (2014)
 - VH: $pp \rightarrow VH^* \rightarrow VVV \rightarrow \ell^+ \nu_\ell j_1 j_2 j_3 j_4$ Physical Review D 90, 115002 (2014)

Interactions

- Multiple Higgs field: one SM-like light Higgs (h) and one generic neutral heavy Higgs boson (H)
- A generic heavy Higgs boson: generic means model-independent, has both dim-4 and effective dim-6 interactions with SM particles.
- Only consider these four dim-6 operators, since we just consider the coupling between heavy Higgs and vector bosons(W/Z) and the rest is constrained by electroweak precision data or not relevant for the heavy Higgs boson.

$$\begin{array}{ll} \text{dim-4 operator Lagrangian} & \text{dim-6 effective operator Lagrangian} \\ \mathcal{L}_{HVV}^{(6)} = \sum\limits_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n, \quad \Lambda = 5 TeV \\ \hline \\ \begin{array}{ll} \text{Light Higgs} \\ \mathcal{L}_{hWW}^{(4)} = \rho_h gm_W hW^\mu W_\mu \\ \mathcal{L}_{hZZ}^{(4)} = \rho_h \frac{gm_W}{2cos^2\theta_W} hZ^\mu Z_\mu \end{array} \end{array} \\ \begin{array}{ll} \mathcal{L}_{HWW}^{(6)} = \rho_H gm_W \frac{f_W}{2\Lambda^2} (W_{\mu\nu}^+ W^{-\mu} \partial^\nu H + h.c.) \\ -\rho_H gm_W \frac{f_WW}{\Lambda^2} W_{\mu\nu}^+ W^{-\mu\nu} H \\ \mathcal{L}_{HZZ}^{(4)} = \rho_H gm_W HW^\mu W_\mu \\ \mathcal{L}_{HZZ}^{(4)} = \rho_H gm_W HW^\mu W_\mu \\ \mathcal{L}_{HZZ}^{(4)} = \rho_H \frac{gm_W}{2cos^2\theta_W} HZ^\mu Z_\mu \end{array} \\ \begin{array}{ll} \mathcal{L}_{HZZ}^{(6)} = \rho_H gm_W \frac{c^2 f_W + s^2 f_B}{2c^2\Lambda^2} Z_{\mu\nu} Z^\mu \partial^\nu H \\ -\rho_H hm_W \frac{c^4 f_{WW} + s^4 f_{BB}}{2c^2\Lambda^2} Z_{\mu\nu} Z^{\mu\nu} H \\ s = sin\theta_W, \quad c = cos\theta_W \end{array} \\ \end{array}$$

Only f_W , f_{WW} , m_H are free parameters

PLB 804 (2020) 135358

Why VH?

- The associated VH(V=W/Z) production and H->VV decay are considered, the V/H is boosted due to dim-6 operators.
 - Don't consider Yukawa coupling due to large background and low sensitivity
 - Vector boson fusion(VBF) is NOT considered because of accompanied by large background
 - Some traditional variables e.g. $\Delta \eta_{jj}$ become more background-like due to dim-6 operators.

Why same-sign di-lepton?

- Three final states are interested:
 - **SS-dilepton**: 2 same-sign lepton final state with two neutrinos from WWW.
 - **OS-dilepton**: 2 opposite-sign lepton final state without neutrino.
 - Trilepton: 3 lepton final state with one neutrino.

Distributions in phenomenology study with signal point $m_H = 600$ GeV, $\rho_H = 0.05$, $f_W = f_{WW} = 1000$ and L = 300 fb⁻¹

Analysis strategy

- Signal signature: two same-sign leptons (e or μ) in association with one large-R jet (J) or two small-R jets (j), and E_T^{miss} .
- Two categories according to hadronic Boson kinematics
 - Boosted: one large-R jet
 - Resolved: two small-R jets

Same-sign 2 lepton (SS2L) WH(WW) $I_{I_{v}}$ $I_{J_{v}}$ $I_{J_{v}}$ $I_{J_{v}}$

Observable:
$$M_{eff} = \sum p_T^{\text{Lepton}} + \sum p_T^{\text{V-jets}} + E_T^{\text{miss}}$$

Analysis regions

• Signal region (SR):

SS2 ℓ $(l_1^{\pm}l_2^{\pm} = e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}e^{\pm}, \mu^{\pm}\mu^{\pm})$				
Boosted	Resolved			
Two same-sign leptor	ns with $p_T > (27)20 \text{ GeV}$			
3^{rd} lepton veto				
no b-jet @ 85% DL1r				
$M_{ll} > 100 \text{ GeV}$				
Boosted Category	Boosted Category			
$E_T^{miss} > 80 \text{ GeV}$	$E_T^{miss} > 60 \text{ GeV}$			
$N_J \ge 1$ $N_j \ge 2$				
$p_T(J_1) > 200 \text{ GeV}$	$p_T(j_1), p_T(j_2) > 20 \text{ GeV}$			
$J_1 @ 80\%$ W tagger	$M_{jj} \in (50, 110) \text{ GeV}$			

- Validation region (VR) is used to validate main prompt backgrounds.
 - Similar with SR
 - Failed the W-tag (Boosted) or $M_{jj} \, {\rm cut}$ (Resolved)

- WZ control region (WZ CR):
 - Invariant mass of three leading leptons $(M_{lll}) > 110 \text{ GeV}$
- Same-sign WW control region (ssWW CR):
 - Invariant mass of two leading small-R jets $(M_{jj}) > 200 \text{ GeV}$

7

Background estimation

- Main background: WZ, same-sign WW (ssWW), WWW, non-prompt leptons background
- Background constrained by control region: ssWW, WZ
- Background estimations from data-driven (limited number of simulated events or difficult to well model the details):
 - Non-prompt background: Background from the non-prompt leptons originating from hadronic jets, mainly from $t\bar{t}$ and W+jets
 - Photon conversion background: due to photon mis-reconstructed as an electron, mainly from $V\gamma$ +jets process
 - Charge flip background: charge misidentification, mainly from Z+jets (ee)

Control Regions

- WZ and ssWW backgrounds are the dominant background in SR.
- Corresponding CRs are defined to constrain WZ/ssWW in the final fit:
 - Take the shape from MC simulation
 - Normalisation factor (NF) is one of the free parameters

NF of X = (data - other backgrounds) / X

Validation Region

- Check background estimation of ssWW, WZ and WWW.
- Data-driven backgrounds and NFs are applied

Fit results in signal region

- Post-fit distributions for boosted SR and resolved SR with background-only fit
- ssWW is the dominant background in boosted SR, while WZ dominates the resolved SR.
- Good agreement between data and expected background.

Systematics

• 5	Systen	natics:
-----	--------	---------

- Experimental systematics: lumi, jet, muon, electron...
- Theoretical systematics: PDF, scale, parton shower.
- Systematics from data-driven background
- Theoretical systematics have the largest impact in boosted SR, while systematics of non-prompt background estimation have the largest impact in resolved SR.

Uncertainty of channel	Boosted SR	Resolved SR
Total systematic uncertainties	10.0%	4.1%
Data driven non-prompt	1.3%	3.3%
Theoretical uncertainties	8.9%	2.6%
MC statistical uncertainties	3.0%	1.9%
Floating normalizations	3.5%	1.2%
Small- <i>R</i> jet	-	1.1%
Data driven photon conversion	0.2%	0.9%
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.2%	0.7%
b-tagging	0.8%	0.5%
Data driven charge-flip	0.1%	0.3%
Electron	0.5%	0.2%
Muon	0.6%	0.2%
Pile-up reweighting	0.2%	0.2%
Large-R jet	1.1%	0.2%
W-tagger	3.7%	-

Upper limits

• Observed and expected exclusion contours at 95% confidence level in $(\frac{\rho_H f_W}{\Lambda^2}, \frac{\rho_H f_{WW}}{\Lambda^2})$ parameter space.

• With
$$m_H = 300 \text{ GeV}$$
, $|\frac{\rho_H f_W}{\Lambda^2}| > 2.7 \text{ TeV}^{-2}$ and $|\frac{\rho_H f_{WW}}{\Lambda^2}| > 10 \text{ TeV}^{-2}$ can be excluded.

• With
$$m_H = 600 \text{ GeV}$$
, $|\frac{\rho_H f_W}{\Lambda^2}| > 2.5 \text{ TeV}^{-2}$ and $|\frac{\rho_H f_{WW}}{\Lambda^2}| > 12 \text{ TeV}^{-2}$ can be excluded.

• With
$$m_H = 900 \text{ GeV}$$
, $|\frac{\rho_H f_W}{\Lambda^2}| > 2.9 \text{ TeV}^{-2}$ and $|\frac{\rho_H f_{WW}}{\Lambda^2}| > 15 \text{ TeV}^{-2}$ can be excluded.

ATLAS-CONF-2022-033

Upper limits

- Upper limit on heavy Higgs production (pp->VH) cross section as a function of m_H at 95% confidence level with 2 set of fixed (f_W , f_{WW}): (0, 6200) and (1350, 0).
 - With $(f_W, f_{WW}) = (0, 6200)$, heavy Higgs boson with mass up to **700** GeV can be excluded, while with $(f_W, f_{WW}) = (1350, 0)$, heavy Higgs boson with mass up to **900** GeV can be excluded.

ATLAS-CONF-2022-033

Summary

- Good data and estimated background agreement in validation region.
- No obvious excess is observed in signal region.
- Upper limit on production cross-section as a function of heavy Higgs mass and exclusion in (f_W, f_{WW}) parameter space are set.

Thanks!

BACKUP

Part I: Introduction

- The discovery of Higgs boson is a milestone of Standard Model (SM).
- Higgs boson may be related to new physics:
 - Precision measurement on Higgs properties
 - Search for new resonances
- Theoretical study on dim-6 operators of heavy Higgs boson from Yu-Ping Kuang
 - ggF: $pp \rightarrow t\bar{t}t\bar{t}$ Physics Letters B 747 (2015) 193-199
 - VBF: $pp \rightarrow H^*j_1^f j_2^f \rightarrow VVj_1^f j_2^f \rightarrow \ell^+ \nu_\ell j_1 j_2 j_1^f j_2^f$ Physical Review D 90, 115002 (2014)
 - VH: $pp \rightarrow VH^* \rightarrow VVV \rightarrow \ell^+ \nu_\ell j_1 j_2 j_3 j_4$ Physical Review D 90, 115002 (2014)

Signal regions: SS-dilepton

• SS-dilepton region:

1.
$$V_0 H \to l^{\pm} \nu_{l^{\pm}} + V_1 (l^{\pm} \nu_{l^{\pm}}) V_2 (\text{jet})$$

2. $V_0 H \rightarrow l^{\pm} \nu_{l^{\pm}} + V_1 (l^{\pm} \nu_{l^{\pm}}) V_2 (\text{fatjet})$

3.
$$V_0 H \to l^{\pm} \nu_{l^{\pm}} + V_1 (l^{\pm} \nu_{l^{\pm}}) V_2 (\text{jet + jet})$$

region (1)	region (2)
$m_{\ell\ell}$ > 300 GeV, $p_T^{\ell\ell}$	$^{\ell} > 100 { m GeV}$,
$p_T^{\ell_1}>$ 300 GeV, p_T^ℓ	$c^{2} > 50$ GeV,
$\Delta \phi_{\ell\ell} >$ 2.0, $E_T^{ m miss}$	> 100 GeV,
no <i>b</i> -tagged	l jets
$p_T^{j_1} > 400 { m GeV}$	$p_T^J > 100$ GeV, $ au_2^J/ au_1^J < 0.6$
region (3)	
$m_{\ell\ell} > 400 \text{ GeV}, \ p_T^{\ell\ell} > 100 \text{ GeV}, \ p_T^{\ell_1} > 450 \text{ GeV}, \ p_T^{\ell_2} > 50 \text{ GeV}, \ \Delta\phi_{\ell\ell} > 1.6, \ E_T^{\text{miss}} > 100 \text{ GeV}$	V,

Iarge-R jet (fatjet) small-R jet

Signal regions: OS-dilepton

• OS-dilepton region:

	region (1)	region (2)
1. $V_0H \rightarrow l^-l^+ + V_1$ (subjet of leading fatjet) V_2 (subjet of leading	fatjet) 80 GeV < m_{ℓ}	ℓ < 100 GeV
2. $V_0H \rightarrow l^-l^+ + V_1(\text{jet})V_2(\text{jet} + \text{jet})$	$p_T^{\ell\ell} > 950 \text{ GeV},$ $p_T^J > 750 \text{ GeV},$ $N_{sj} = 2,$	$p_T^{\ell\ell} > 550 \text{ GeV},$ $p_T^{j_1} > 300 \text{ GeV},$ 70 GeV < $m_{j_1} < 150 \text{ GeV},$
3. $V_0H \rightarrow \text{jet} + V_1(l^-l^+)V_2(\text{jet} + \text{jet})$	70 GeV $< m_{sj_{1,2}} < 150$ GeV, $\tau_2^{\ J}/\tau_1^{\ J} < 0.45$	$\tau_2^{j_1}/\tau_1^{j_1} < 0.40,$ 70 GeV $< m_{j_{23}} < 110$ GeV, $m_{j_{23}}^{j_{23}} > 150$ CeV
4. $V_0 H \rightarrow \text{jet} + V_1 (l^- l^+) V_2 (\text{jet})$		$p_T > 150 \text{ GeV},$ $\Delta R(j_1, j_{23}) < \Delta R(\ell \ell, j_1),$ $\Delta R(j_1, j_{23}) < \Delta R(\ell \ell, j_{23}),$ $p_T^{j_1+j_{23}} > 550 \text{ GeV}$
	region (3)	region (4)
	80 GeV $< m_{\ell\ell} <$ 100 $p_T^{j_1} >$ 700 GeV, 70 G	GeV, $p_T^{\ell\ell}$ > 300 GeV, eV $< m_{j_1} < 150$ GeV
$J (1) \qquad j_2 j_3 \qquad j_1 (2)$ $j_1 \qquad \qquad$	$\begin{split} &\tau_{2}^{j_{1}}/\tau_{1}^{j_{1}} < 0.60, \\ &75 \text{ GeV} < m_{j_{23}} < 115 \text{ GeV}, \\ &p_{T}^{j_{23}} > 50 \text{ GeV}, \\ &\Delta R(\ell\ell, j_{23}) < \Delta R(j_{1}, \ell\ell), \\ &\Delta R(\ell\ell, j_{23}) < \Delta R(j_{1}, j_{23}), \\ &p_{T}^{\ell\ell+j_{23}} > 700 \text{ GeV} \end{split}$	$\begin{split} &\tau_{2}^{j_{1}}/\tau_{1}^{j_{1}} < 0.52, \\ &p_{T}^{j_{2}} > 250 \text{ GeV}, \\ &70 \text{ GeV} < m_{j_{2}} < 150 \text{ GeV}, \\ &\tau_{2}^{j_{2}}/\tau_{1}^{j_{2}} < 0.52, \\ &\Delta R(\ell \ell, j_{2}) < \Delta R(j_{1}, \ell \ell), \\ &\Delta R(\ell \ell, j_{2}) < \Delta R(j_{1}, j_{2}), \\ &p_{T}^{\ell \ell + j_{2}} > 700 \text{ GeV} \end{split}$
$j_{2} j_{3} l^{+} l^{+}$ (3) $j_{2} l^{+} l^{-} l^{-}$ (4)		

Signal regions: Trilepton

- Trilepton region:
 - 1. $V_0 H \to l^{\pm} \nu_{l^{\pm}} + V_1 (l^+ l^-) V_2 (\text{jet})$
 - 2. $V_0H \rightarrow l^{\pm}\nu_{l^{\pm}} + V_1(l^+l^-)V_2(\text{fatjet})$
 - 3. $V_0H \rightarrow l^{\pm}\nu_{l^{\pm}} + V_1(l^+l^-)V_2(\text{jet + jet})$
 - 4. $V_0 H \rightarrow l^+ l^- + V_1 (l^\pm \nu_{l^\pm}) V_2$ (jet)
 - 5. $V_0 H \rightarrow l^+ l^- + V_1 (l^\pm \nu_{l^\pm}) V_2$ (fatjet)
 - 6. $V_0 H \to l^+ l^- + V_1 (l^\pm \nu_{l^\pm}) V_2 (\text{jet + jet})$

region (1)	region (4)		
$p_T^{\ell \nu} > 600 \mathrm{GeV}$	$p_T^{\ell\ell} > 600 { m GeV}$		
80 GeV $< m_{\ell\ell} < 100$	0 GeV,		
60 GeV < m_{j_1} < 160 GeV, τ	$r_2^{j_1}/\tau_1^{j_1} < 0.60$		
$\Delta R(\ell \ell, j_1) < \Delta R(\ell \nu, \ell \ell),$	$\Delta R(\ell\nu,j_1) < \Delta R(\ell\ell,\ell\nu),$		
$\Delta R(\ell \ell, j_1) < \Delta R(\ell \nu, j_1),$	$\Delta R(\ell \nu, j_1) < \Delta R(\ell \ell, j_1),$		
$p_T^{\alpha+J_1} > 600 \text{ GeV}$	$p_T^{ev+J_1} > 600 \text{ GeV}$		
region (2)	region (5)		
$p_T^{\ell v} > 600 \text{ GeV}$	$p_T^{\ell\ell} > 600 { m GeV}$		
80 GeV $< m_{\ell\ell} < 100$	0 GeV,		
70 GeV $< m_J < 140$ GeV, 7	$\tau_2^J / \tau_1^J < 0.50$		
$\Delta R(\ell \ell, J) < \Delta R(\ell \nu, \ell \ell),$	$\Delta R(\ell\nu,J) < \Delta R(\ell\ell,\ell\nu),$		
$\Delta R(\ell\ell, J) < \Delta R(\ell\nu, J),$	$\Delta R(\ell \nu, J) < \Delta R(\ell \ell, J),$		
$p_T^{\ell\ell+J} > 600 \text{ GeV}$	$p_T^{\ell \nu + J} > 600 \text{ GeV}$		
region (3)	region (6)		
$p_T^{\ell v} > 600 \text{ GeV}$	$p_T^{\ell\ell} > 600 { m GeV}$		
80 GeV $< m_{\ell\ell} < 100$	0 GeV,		
60 GeV $< m_{j_{12}} < 120$ GeV			
$\Delta R(\ell \ell, j_{12}) < \Delta R(\ell \nu, \ell \ell),$	$\Delta R(\ell\nu,j_{12}) < \Delta R(\ell\ell,\ell\nu),$		
$\Delta R(\ell\ell, j_{12}) < \Delta R(\ell\nu, j_{12}),$	$\Delta R(\ell\nu,j_{12}) < \Delta R(\ell\ell,j_{12}),$		
$p_T^{\ell \ell + j_{12}} > 600 \text{ GeV}$	$p_T^{\ell \nu + j_{12}} > 600 { m GeV}$		
l v	l^+ l^-		
\setminus			
X			
$j_{1} + j_{1} + j_{1}$	j_{1} j_{1} (6)		
i i j_2 i	$V I = \int_{2}^{1} I(v)$		

95% Confidence Level Exclusion

- Take $\rho_h = 1$ and $\rho_H = 0.05$ as benchmark value.
- Get CLs of each parameter point by "template" fits with a large quantity of toy experiments.
- Unitarity bound: $|S^{\dagger}S| = 1$
 - Areas within the unitarity bound are allowed by theory.
- Areas outside the exclusion contours can be excluded.

Analysis strategy and selections

- Signal signature: two same-sign leptons (e or μ) in association with one large-R jet (J) or two small-R jets (j), and E_T^{miss} .
- Boosted SR: leading large-R jet
 passing LCTopo W-tagger
- Resolved SR: invariant mass of two leading small-R jets consistent with a hadronically decaying W-boson
- Dominant Backgrounds:
 - WZ and same-sign WW (ssWW): MC driven with normalisation from data using dedicated CRs.
 - WWW: MC driven
 - Non-prompt: data driven

Selections	Boosted SR	Resolved SR	ssWW CR	Boosted WZ CR	Resolved WZ CR
Trigger	Single lepton				
	two same-sign leptons with			three leptons with	
Lentons	p	$_{\Gamma} > 27, 20 \text{ GeV}$		$p_{\rm T} > 27, 20, 20 { m GeV}$	
Leptons				at least one SFOS lepton pair	
		zero a	dditional veto	leptons	
$m_{\ell\ell}$	> 100 GeV -			-	
$m_{\ell\ell\ell}$	-			> 100 GeV	
<i>b</i> -jets	zero b-tagged small-R jets				
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 80 GeV	> 60 GeV		> 40 GeV	
	at least one large- R jet with	zero large-R jets wi	ith	at least one large- R jet with	zero large- R jets with
Large_R jets	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T}$ > 200 GeV, $ \eta $ <	2.0	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$
Large-K jets	$50 \text{ GeV} < m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$	GeV	$50 \text{ GeV} < m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$
	and pass 80% W-tagger WP			and pass 80% W-tagger WP	
Small_R jets	-	at least two small- R jets with		-	at least two small- R jets with
Sinan-A jets		$p_{\mathrm{T}} > 20 \text{ GeV} \text{ and } \eta < 2.5$			$p_{\rm T}$ > 20 GeV and $ \eta $ < 2.5
m_{jj}	-	$50 \text{ GeV} < m_{jj} < 110 \text{ GeV}$	> 200 GeV	-	-

Event selections

Selections	Boosted SR	Resolved SR	ssWW CR	Boosted WZ CR	Resolved WZ CR	
Trigger	Single lepton					
	two same-sign leptons with three leptons with					
Lentons	p_{1}	$_{\Gamma} > 27, 20 \text{ GeV}$		$p_{\rm T} > 27, 20, 20 { m GeV}$		
Leptons				at least one SI	FOS lepton pair	
		zero a	additional veto	leptons		
$m_{\ell\ell}$		> 100 GeV		-		
$m_{\ell\ell\ell}$		_			> 100 GeV	
<i>b</i> -jets	zero <i>b</i> -tagged small- <i>R</i> jets					
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 80 GeV	> 60 GeV		> 40 GeV		
	at least one large- <i>R</i> jet with	zero large-R jets w	vith	at least one large- <i>R</i> jet with	zero large- <i>R</i> jets with	
Large Piets	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T} > 200 \text{ GeV}, \eta \cdot$	< 2.0	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	
Large-K Jets	$50 \text{ GeV} < m_J < 200 \text{ GeV}$ $50 \text{ GeV} < m_J < 200 \text{ GeV}$		$50 \text{ GeV} < m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$		
	and pass 80% W-tagger WP			and pass 80% W-tagger WP		
Small R jets	-	at least two small- <i>R</i> jets with		-	at least two small- <i>R</i> jets with	
Sillall-A jets		$p_{\rm T}$ > 20 GeV and $ \eta $ < 2.5			$p_{\rm T} > 20 \text{ GeV and } \eta < 2.5$	
m_{jj}	-	$50 \text{ GeV} < m_{jj} < 110 \text{ GeV}$	> 200 GeV	-	-	

Yields

Yields	Boosted SR	Resolved SR	Boosted WZ CR	Resolved WZ CR	ssWW CR
Observed events	24	191	236	2094	567
Fitted bkg events	26.8 ± 2.7	189.0 ± 7.8	235 ± 15	2095 ± 46	566 ± 24
WWW	5.8 ± 1.0	30.4 ± 2.9	1.30 ± 0.31	11.2 ± 2.1	28.5 ± 5.5
ssWW	7.5 ± 2.3	16.5 ± 1.9	—	_	254 ± 27
WZ	6.71 ± 0.76	68.7 ± 5.0	221 ± 15	1956 ± 50	150.6 ± 5.7
Non-prompt	3.20 ± 0.36	39.6 ± 6.3	—	_	48.6 ± 8.8
Charge-flip	0.43 ± 0.03	8.61 ± 0.57	_	_	22.8 ± 1.3
Photon conversion	0.73 ± 0.07	17.2 ± 1.7	_	_	46.7 ± 4.7
Other	2.50 ± 0.45	9.0 ± 1.5	12.3 ± 1.6	130 ± 20	14.3 ± 2.0

Systematics

Uncertainty of channel	Boosted SR	Resolved SR
Total systematic uncertainties	10.0%	4.1%
Data driven non-prompt	1.3%	3.3%
Theoretical uncertainties	8.9%	2.6%
MC statistical uncertainties	3.0%	1.9%
Floating normalizations	3.5%	1.2%
Small- <i>R</i> jet	-	1.1%
Data driven photon conversion	0.2%	0.9%
E ^{miss}	0.2%	0.7%
<i>b</i> -tagging	0.8%	0.5%
Data driven charge-flip	0.1%	0.3%
Electron	0.5%	0.2%
Muon	0.6%	0.2%
Pile-up reweighting	0.2%	0.2%
Large- <i>R</i> jet	1.1%	0.2%
W-tagger	3.7%	-