

HH→4b searches in ATLAS

Rui Zhang University of Wisconsin-Madison Higgs Potential Conference (Beijing) 26 July 2022

HH production and decay at LHC

 $\sigma_{\rm HH}$ @ 13 TeV ~ 30 fb (1000x smaller than single H)

Non-resonant σ^{ggF} = 31.05 fb

Non-resonant $\sigma^{VBF} = 1.73$ fb

Resonant ggF

Large branching ratio

	Clean final state				
	bb	WW	ττ	ZZ	ΥY
bb	34 %				
WW	25 %	4.6 %			
ττ	7.3 %	2.7 %	0.39 %		
ZZ	3.1 %	1.1 %	0.33 %	0.069 %	
ΥY	0.26 %	0.10 %	0.028 %	0.012 %	0.0005 %

Combination of various final states fundamental for observation!

New physics can manifest as deviations in $\sigma_{\rm HH}$

R. Zhang

Higgs Potential 2022 (Peking U)

26.07.2022

The HH→4b channel

Largest HH rate ~ 1.5K SM events produced in Run 2 (140 fb⁻¹)

But searching for signal events is challenged by the large production of multi-jet bkg events (QCD multijet 90–95%, top quarks (5–10%)

Experimental challenges:

- Online trigger algorithms are complex
 - Depends on Level 1 (L1) seed, High level trigger (HLT) tracking, jet reconstruction/calibration, b-tagging, etc
 - Constrained by L1 rate, HLT CPU limit & output rate
 - Consistency with offline algorithms (e.g. offline b-tagging)
- b quark jet or H jet identification w.r.t large u/s/d/c/g jet bkg
- Higgs boson reconstruction affected by
 - Large jet combinatorics
 - Missing energy from neutrinos in semi-leptonic B decays
 - Jet constituents from Initial/Final state radiation & Pile-up
- Precise model and rejection of multijet bkg are crucial

Event selection — kinematics

Central jets:	Forward jets:	VBF jets:
pT > 40 GeV	pT > 30 GeV	Pair of non b-tagged jets,
$ \eta < 2.5$	$ \eta > 2.5$	in central+forward selection, with highest m _{jj}

Also keep 2b data for bkg estimation.

Event selection — pairing

- Choose pairing that minimises ∆R between jets in the leading Higgs candidate (H₁)
- No mass information used to avoid sculpting the H₁-H₂ mass plane
- This is different from the one in the resonant search (see later)

Strips ~80 GeV due to X_{Wt} cut

Background estimation

2b events can be reweighted to 4b (kinematically similar)

Background estimation performance

Reweighting improves the agreement with 4b events significantly.

Categorisation

ggF signal region

Events are categorised in 6 categories in ggF and 2 categories in VBF.

 $|\Delta \eta_{HH}| < 0.5, X_{HH} < 0.95$ ggF Signal Region |Δη_{HH}| < 0.5, X_{HH} < 0.95 $|\Delta \eta_{HH}| < 0.5, X_{HH} > 0.95$ $0.5 < |\Delta \eta_{HH}| < 1.0, X_{HH} < 0.95$ $0.5 < |\Delta \eta_{HH}| < 1.0, X_{HH} > 0.95$ $|\Delta \eta_{HH}| > 1.0, X_{HH} < 0.95$ $|\Delta \eta_{HH}| > 1.0, X_{HH} > 0.95$ (a) VBF signal region $|\Delta \eta_{HH}| < 1.5$ ATLAS Preliminary $|\Delta \eta_{HH}| > 1.5$ √s = 13 TeV. 126 fb⁻¹ S 800 ggF Signal Region |Δη_{нн}| < 0.5, Х_{нн} > 0.95 ggł (d) Categorisation improves S/B in certain categories, therefore **VBF** improves sensitivity.

R. Zhang

Higgs Potential 2022 (Peking U)

Systematic uncertainties

- The major uncertainties are bkg estimation uncertainty
 - Statistical: 2b statistics + DNN variation under bootstrapped deep ensembles (100 trainings)

- Alternative vs nominal estimate (A vs A')
- 3b1f region non-closure
- Normalisation uncertainty from 2b/4b CR
- Signal MC is affected by standard JES, JER, Flavour tagging, luminosity, pileup, modelling, ...

Results

	Observed Limit	-2σ	- 1σ	Expected Limit	+1 <i>o</i>	+2 σ
$\sigma_{ m ggF}/\sigma_{ m ggF}^{ m SM}$	5.5	4.4	5.9	8.2	12.4	19.6
$\sigma_{ m VBF}/\sigma_{ m VBF}^{ m SM}$	130.5	71.6	96.1	133.4	192.9	279.3
$\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	5.4	4.3	5.8	8.1	12.2	19.1

- 3x improvement wrt previous ggF result (11.1(20.7) x SM)
- 4x improvement wrt previous VBF results (840(550) x SM)

Results – likelihood scan

- Cross section scan provides information for signal strength under each κ assumption against SM background
- Another hypothesis test against different couplings values
 - Observed: test which κ value is most compatible to data
 - Expected: test $\kappa \neq 1$ against $\kappa = 1$

HH→4b resonant search

Phys. Rev. D 105, 092002

Resolved channel

- Target up to 1.5 TeV resonance decay to two Higgs
- Event selection similar to the non-resonant analysis
- Pairing: BDT pairing
 - Parametrised to m_{HH}
 - Better efficiency at low m_{HH} \bigcirc
- Background estimation
 - Similar to the non-resonant analysis
- Final observable: corrected m_{HH}
 - m_{HH} obtained by scaling Higgs candidate four- \bigcirc

Boosted channel

Target up to 5.0 TeV resonance decay to two Higgs Event selection

- ≥ 2 large-*R* jets p_T> 250 GeV, |η| < 2
- \circ m(H) > 50 GeV
- \circ $|\Delta\eta_{\rm HH}| < 1.3$
- Resolved events veto
- Categorised to 2/3/4 b-track-jet

- Background estimation: data-driven QCD estimation, MC based tt
 (next slide)
 - Use of low-tag regions

● Final observable: m_{HH}

Higgs Potential 2022 (Peking U)

Discriminant

HH→bbbb resonant results

- Likelihood fit on (corrected) m_{HH} distributions
- Constrained on narrow spin-0 and spin-2 graviton cross sections
- 5x improvement wrt previous result
 - B-tagging and correction, background estimation, BDT-pairing

Largest excess at 1.1 TeV, local (global) significance of 2.6 σ (1.0 σ)

Summary

- Di-Higgs searches in the 4b final states is presented
 - Used ATLAS full Run 2 data
 - Non-resonant signature targeting a search and constraint of Higgs self-coupling κ_{λ} and HHVV coupling κ_{2V}
 - Resonant searches combine resolved and boosted signatures to probe a wider range of mass
- Areas for potential improvements to explore (my personal take)
 - More efficient event triggers
 - More accurate paring algorithms
 - More robust background estimation
 - More powerful background suppression
 - ...

• Will continue searches with Run 3 data. Stay tuned!

Backup

Event selection — kinematics

Also keep 2b data for bkg estimation.

0

0

Higgs Potential 2022 (Peking U)

Background estimation

• $w(\vec{x}) = \frac{p_{4b}(\vec{x})}{p_{2b}(\vec{x})}$

- A neural network is adopted to learn $w(\vec{x})$
 - To take the desired form of $\frac{p_{4b}(\vec{x})}{p_{2b}(\vec{x})'}$, construct a loss function which satisfies $\arg\min_{R} \mathcal{L}(R(x)) = \frac{p_{4b}(x)}{p_{2b}(x)}$
 - Such loss exists, e.g.

$$\mathcal{L}(R(x)) = \mathbb{E}_{x \sim p_{2b}} \left[\sqrt{R(x)} \right] + \mathbb{E}_{x \sim p_{4b}} \left[\frac{1}{\sqrt{R(x)}} \right]$$

Background estimation inputs

ggF	VBF		
 log(p_T) of the 2nd leading Higgs boson candidate jet log(p_T) of the 4th leading Higgs boson candidate jet log(ΔR) between the closest two Higgs boson candidate jets log(ΔR) between the other two Higgs boson candidate jets log(ΔR) between the other two Higgs boson candidate jets Average absolute η value of the Higgs boson candidate jets log(p_T) of the di-Higgs system ΔR between the two Higgs boson candidates Δφ between jets in the leading Higgs boson candidate Δφ between jets in the subleading Higgs boson candidate log(X_{Wt}) Number of jets in the event Trigger class index as one-hot encoder 	 Maximum di-jet mass out of the possible pairings of the four Higgs boson candidate jets Minimum di-jet mass out of the possible pairings of the four Higgs boson candidate jets Energy of the leading Higgs boson candidate Energy of the subleading Higgs boson candidate Energy of the subleading Higgs boson candidate Second smallest Δ<i>R</i> between the jets in the leading Higgs boson candidate (out of the three possible pairings for the leading Higgs candidate) Average absolute η value of Higgs boson candidate jets log(X_{Wt}) Trigger class index as one-hot encoder Year index as one-hot encoder (for years inclusive training) 		

Background estimation validation

Comprehensive validations are conducted

Control Data Sample	Definition	Usage
Control Region (CR)	Events with $X_{HH} > 1.6$ and within the circle defined by: $\sqrt{\left(m_{H1} - 1.05 \cdot 124 \text{GeV}\right)^2 + \left(m_{H2} - 1.05 \cdot 117 \text{GeV}\right)^2} = 45 \text{GeV}$	Background estimation (ggF and VBF)
2b	Remove the ≥ 4 <i>b</i> -tagged central jets selection and require exactly 2 <i>b</i> -tagged central jets plus two additional untagged central jets	Background estimation (ggF and VBF)
3 <i>b</i> 1f	Remove the ≥ 4 <i>b</i> -tagged central jets selection and require exactly 3 <i>b</i> -tagged central jets plus one central jet failing a looser <i>b</i> -tagging requirement	Background estimation valida- tion (ggF and VBF), addi- tional background modeling un- certainty (ggF only)
Reverse $ \Delta \eta_{HH} $	Remove the $ \Delta \eta_{HH} < 1.5$ selection and require $ \Delta \eta_{HH} > 1.5$	Background estimation valida- tion (ggF only)
Shifted region	Shift the center of the SR in the m_{H1} - m_{H2} plane to avoid overlap with the nominal SR	Background estimation valida- tion (ggF only)

• In particular:

- Reversed $|\Delta \eta_{HH}|$ region to check nuisance parameter¹⁶⁰ pulls
- 3b1f, one jet fails a looser b-tagging criterion, to check residual of systematics coverage
- Multiple shifted regions to check higher level behaviours

4b non-resonant cutflow

	Data	ggF Signal		VBF Signal	
		SM	$\kappa_{\lambda} = 10$	SM	$\kappa_{2V} = 0$
Common preselection					
Preselection	5.70×10^{8}	526.6	7337.7	22.3	626.1
Trigger class	2.49×10^{8}	381.8	5279.1	16.1	405.2
ggF selection					
Fail VBF selection	2.46×10^{8}	376.6	5198.0	13.9	334.4
At least 4 <i>b</i> -tagged central jets	1.89×10^{6}	86.0	1001.7	1.9	65.2
$ \Delta \eta_{HH} < 1.5$	1.03×10^{6}	71.9	850.6	0.9	46.4
$X_{Wt} > 1.5$	7.51×10^{5}	60.4	569.0	0.7	43.1
X_{HH} < 1.6 (ggF signal region)	1.62×10^{4}	29.1	182.7	0.2	23.0
VBF selection					
Pass VBF selection	3.30×10^{6}	5.2	81.1	2.2	70.7
At least 4 <i>b</i> -tagged central jets	2.71×10^{4}	1.1	15.3	0.7	27.6
$X_{Wt} > 1.5$	2.18×10^4	1.0	11.2	0.7	26.5
$X_{HH} < 1.6$	5.02×10^{2}	0.5	3.1	0.3	17.3
$m_{HH} > 400 \text{GeV} \text{ (VBF signal region)}$	3.57×10^{2}	0.4	1.8	0.3	16.4

4b resonant yields table

m(X) [GeV]	Corrected $m(HH)$ range [GeV]	Data	Background model	Spin-0 signal model	
260	[250, 321]	18554	18300 ± 110	503 ± 43	
500	[464, 536]	2827	2866 ± 22	105.4 ± 5.7	
800	[750, 850]	358	366.2 ± 7.3	37.7 ± 1.7	
1200	[1079, 1250]	68	52.6 ± 1.7	11.71 ± 0.62	

Higgs Potential 2022 (Peking U)

26.07.2022

4b non-resonant mass plane

4b non-resonant discriminants

25

Background estimation

Major bkg: 10%(4b), 15%(3b), 30%(2b) tt, QCD

Normalisation

 Simultaneous fit to H₁ mass distributions in CR between high tag and low-tag (totally 6 param.)

$$N_{i,\text{data}}^{\text{hi}} = \frac{\mu_{\text{QCD}}^{n_b}}{(N_{i,\text{data}}^{\text{lo}} - N_{i,t\bar{t}}^{\text{lo}})} + \frac{\alpha_{t\bar{t}}^{n_b}}{\alpha_{t\bar{t}}^{n_b}} N_{i,t\bar{t}}^{\text{hi}}$$

 Syst: Choice of CR, extrapolation to SR, fit uncertainty

Shape

- Reweight untag into tagged Higgs candidate by fitting ratios of jet quantities
- Apply smoothing on m_{HH} for m_{HH} > 1200 GeV to reduce statistical fluctuations for QCD and tt separately in each region
- Syst: fit uncertainty, fit function and range choice, residual in VR, non-closure from MC

Agreement in VR after bkg estimation

26

Boosted results

