

Constraining the Higgs boson self-coupling from single- and double-Higgs production at ATLAS

Yanping Huang¹, <u>Kunlin Ran²</u> on behalf of the ATLAS analysis team ¹IHEP, ²DESY

Higgs Potential 2022 26.07.2022

Introduction

 Higgs self-interaction is important to Higgs potential

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2, \mu^2 < 0$$

- Non-zero ground state: $\pm \mu/\sqrt{2\lambda} = \pm \nu/\sqrt{2}$
- Gauge EW symmetry is broken spontaneously

$$\rightarrow V(H) = \frac{m_H^2}{2} H^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4$$

- Higgs mechanism + Yukawa coupling give elementary particles masses
- Plays fundamental role in understanding the stability of the universe

Constraining the Higgs boson self-coupling from H+HH at ATLAS, Kunlin Ran, 26.07.2022

Higgs self-interaction is important to understand the non trivial structure to

Di-Higgs production

Combined HH results

- Overlaps among 3 analyses are negligible
- Before constrain κ_{λ} and κ_{2V} , upper limits of HH XS are measured

Combined HH results (κ_{λ})

Combined HH results (κ_{2V})

Single-/Double-Higgs combination

κ_{λ} interpretation on single Higgs productions

indirect approach)

$$\mu_{i}(\kappa_{\lambda},\kappa_{i}) = Z_{H}^{BSM}(\kappa_{\lambda}) \left[\kappa_{i}^{2} + \frac{(\kappa_{\lambda}-1)C_{1}^{i}}{K_{EW}^{i}} \right], Z_{H}^{BSM}(\kappa_{\lambda})$$

• κ_{λ} also contributes to single Higgs XS and BR via NLO EW corrections (complementary

Kinematic dependence of κ_{λ} on STXS

• Differential STXS are exploited to precisely describe κ_{λ} dependence

Constraining the Higgs boson self-coupling from H+HH at ATLAS, Kunlin Ran, 26.07.2022

$H \to \gamma \gamma$	$H \to WW^*$	$H \to ZZ^*$	$H \to b \overline{b}$	$H \to \tau \tau$
0.49	0.73	0.82	0	0
$9\kappa_V^2 + 0.07\kappa_F^2 - 0.67\kappa_V\kappa_F$	κ_V^2	κ_V^2	κ_F^2	κ_F^2

The κ_{λ} dependence of $A \times \epsilon$ was evaluated to be negligible in single Higgs

Only single Higgs XS/BR are parameterized

Combine with single Higgs

• Combine single- and double-Higgs to have more stringent constraints on κ_{λ}

• Comprehensive combination to relax assumptions on other Higgs couplings (κ_t , κ_V , etc.)

Channel	Integrated luminosity (fb ⁻
$HH \rightarrow b\bar{b}\gamma\gamma$	139
$HH \rightarrow b\bar{b}\tau\bar{\tau}$	139
$HH \rightarrow b\bar{b}b\bar{b}$	126
$H \to \gamma \gamma$	139
$H \to ZZ^* \to 4\ell$	139
$H \to \tau^+ \tau^-$ remove $ttH, H \to \tau \tau$ in	combination 139
$H \rightarrow WW^* \rightarrow e \nu \mu \nu \text{ (ggF,VBF)}$	139
$H \to b \bar{b}$ (VH)	139
$H \rightarrow b\bar{b}$ (VBF)	126
$H \to b\bar{b} (t\bar{t}H)$	139

Overlaps are mostly negligible between single-Higgs and double-Higgs

• Except 4% $HH \rightarrow bb\tau\tau$ SR events overlapping with $ttH, H \rightarrow \tau\tau$

 \Rightarrow Remove $ttH, H \rightarrow \tau\tau$ categories (low sensitivity to κ_{λ}) in combination

H+HH combined results

Constraining the Higgs boson self-coupling from H+HH at ATLAS, Kunlin Ran, 26.07.2022

sumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1a}_{-1a}$
1	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
nation	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
tion	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
tion, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_{\lambda} < 6.1$	$-2.1 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

• Compatible single-Higgs κ_{λ} limit with CMS

H+HH combination provides the most stringent

• Exp. κ_{λ} only limit is 5% better than HH (most sensitive), 78% better than H

• Most generic model ($\kappa_{\lambda}, \kappa_{V}, \kappa_{t}, \kappa_{b}, \kappa_{\tau}$) with less model dependences can only be investigated in H+HH and still gives strong constraints on κ_{λ}

Constraining the Higgs boson self-coupling from H+HH at ATLAS, Kunlin Ran, 26.07.2022

$+1\sigma$ -1σ	$\kappa_t {}^{+1\sigma}_{-1\sigma}$	$\kappa_b^{+1\sigma}_{-1\sigma}$	$\kappa_{\tau}^{+1\sigma}_{-1\sigma}$	$\kappa_{\lambda - 1\sigma}^{+1\sigma}$	κ _λ [95% CL]	
1	1	1	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs
	I			$1.0^{+4.8}_{-1.7}$	[-1.9, 7.5]	Exp
1	$1.00^{+0.05}_{-0.04}$	$\begin{array}{c c} .00^{+0.05}_{-0.04} & 1 \\ .00^{+0.05}_{-0.04} & 1 \end{array}$	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs
1 1.0	$1.00^{+0.05}_{-0.04}$			$1.0^{+4.8}_{-1.7}$	[-1.9, 7.6]	Exp
$)^{+0.05}_{-0.05}$	$0.93^{+0.07}_{-0.06}$	$0.90^{+0.12}_{-0.11}$	$0.93^{+0.08}_{-0.07}$	$2.3^{+2.1}_{-2.0}$	[-1.3, 6.1]	Obs
$)^{+0.05}_{-0.05}$	$1.00^{+0.07}_{-0.07}$	$1.00^{+0.12}_{-0.12}$	$1.00^{+0.08}_{-0.08}$	$1.0^{+5.0}_{-1.8}$	[-2.1, 7.6]	Exp

HH only can't constrain κ_t , κ_λ simultaneously

With single-Higgs, assumption on κ_t can be relaxed w/o losing κ_{λ} sensitivity

Summary

- breaking
 - Together with Yukawa coupling give elementary particles masses
- [ATLAS-CONF-2022-050]
 - > 95% CL upper limit of μ_{HH} is 2.4 (2.9) x SM, 3.4 times better than 36 fb⁻¹ HH combination
 - > 95% CL interval of κ_{λ} is [-0.6, 6.6] ([-2.1, 7.8]), 2.4 times better than before
 - κ_{2V} is firstly constrained in HH combination: [0.1, 2.0] ([0.0, 2.1])
- relax assumptions on other Higgs couplings
 - κ_{λ} limit [-0.4, 6.3] ([-1.9, 7.5]) is 5% better than HH alone (most sensitive)
 - HH only can't constrain κ_{t} , κ_{λ} simultaneously, with single Higgs both can be measured w/o losing κ_{λ} sensitivity
- Looking forward to improving measurement precision of Higgs self-interaction in Run3 and HL-LHC! Constraining the Higgs boson self-coupling from H+HH at ATLAS, Kunlin Ran, 26.07.2022

Higgs self-interaction is important to understand the non trivial structure to Higgs potential, which originates EW symmetry

• Di-Higgs is directly sensitive to self-coupling at LO, 3 most sensitive channels (*bbbb*, *bb* $\tau\tau$, *bb* $\gamma\gamma$) are combined to constrain κ_{λ}

 κ_{λ} also contributes to single Higgs via NLO EW corrections, combine with HH to have more stringent constraints on κ_{λ} and to

• Most generic model (κ_{λ} , κ_{V} , κ_{t} , κ_{h} , κ_{τ}) with can only be investigated in H+HH and still gives strong constraints on κ_{λ}

HL-LHC projection combing $bb\tau\tau + bb\gamma\gamma$ [ATL-PHYS-PUB-2022-005]

Constraining the Higgs boson self-coupling from H+HH at ATLAS, Kunlin Ran, 26.07.2022

Thanks a lot!

Kinematic dependence

 κ_{λ} and κ_{2V} dependences on HH XS, $A \times \epsilon$ and kinematics are considered

