

Search for Higgs pair production in association with a vector boson with ATLAS

Tong Li, Zhongyukun Xu, Lianliang Ma Shandong University

Higgs Potential 2022 @ Peking University, 26 July 2022

Contents

Introduction

- > ATLAS detector
- Search for non-resonant Vhh production
- Search for resonant Vhh production
 - \succ VH, H \rightarrow hh search
 - \succ A \rightarrow ZH, H \rightarrow hh search
- Summary

Introduction

SM predicts Higgs trilinear coupling (hhh) and quartic couplings with itself and vector boson (VVhh)

- Not confirmed yet experimentally
- Can be probed via Higgs pair production in association with a vector boson (Vhh)

Non-resonant Vhh production with κ_{λ} , κ_{V} and κ_{2V} vertices > For SM case, $\kappa_{\lambda} = \kappa_{V} = \kappa_{2V} = 1$

First search with Vhh final state with ATLAS

 \succ V \rightarrow vv / lv / ll, h \rightarrow bb

Full Run 2 dataset used

Introduction

BSM models predict the existences of the heavy neutral scalar H and heavy pseudoscalar A

- H produced in association with a vector boson
- A produced via gluon-gluon fusion, and decays into ZH
- > H decays into a pair of SM Higgs (H→hh)
- The same final state with non-resonant production
 - \succ V \rightarrow vv / lv / ll, h \rightarrow bb
- Resonant Vhh production
- First search with Vhh final state in ATLAS
- Full Run 2 dataset used

ATLAS detector

> A Toroidal LHC ApparatuS (ATLAS), located at the Point 1 of the LHC

•

- World's largest particle detector with diameter of 25 m and length of 44 m
- General-purpose detector designed mainly to search for Higgs and new physics \succ

MC samples

List of MC event generators, PDFs, parton shower, hadronization and UE models used to simulate signal and background processes

The last column shows the calculation orders of cross-sections used

The mass of the Higgs boson h is set to 125 GeV in the simulation

Process	Matrix e			Parton	UE	Cross-section			
	generator	order	PDF	shower	model	order			
Signal samples									
Non-resonant V hh	MadGraph5_aMC@NLO	LO	NNPDF2.3LO	Рутніа 8.244	A14	NNLO			
Resonant VH	MadGraph5_aMC@NLO	LO	NNPDF2.3LO	Рутніа 8.244	A14	LO			
Resonant $A \rightarrow ZH$	MadGraph5_aMC@NLO	LO	NNPDF2.3LO	Рутніа 8.244	A14	LO			
Top quark processes									
tī	Powheg-Box v2	NLO	NNPDF3.0NLO	Рутніа 8.230	A14	NNLO +NNLL			
Single-t: s-channel	Powheg-Box v2	NLO	NNPDF3.0NLO	Рутніа 8.230	A14	NLO			
Single-t: t-channel	Powheg-Box v2	NLO	NNPDF3.0NLO	Рутніа 8.230	A14	NLO			
Single-t: Wt	Powheg-Box v2	NLO	NNPDF3.0NLO	Рутніа 8.230	A14	NNLO			
ttH	Powheg-Box v2	NLO	NNPDF3.0NLO	Рутніа 8.230	A14	NLO (QCD+EW)			
ttV	MadGraph5_aMC@NLO	NLO	NNPDF3.0NLO	Рутніа 8.230	A14	NLO (QCD+EW)			
ttℓℓ§	MadGraph5_aMC@NLO	NLO	NNPDF3.0NLO	Рутніа 8.230	A14	NLO			
tttt	MadGraph5_aMC@NLO	NLO	NNPDF3.1LO	Рутніа 8.230	A14	NLO (OCD+EW)			
ttt	MadGraph5_aMC@NLO	LO	NNPDF2.3LO	Рутніа 8.230	A14	LO			
ttWW	MadGraph5_aMC@NLO	LO	NNPDF2.3LO	Рутніа 8.230	A14	LO			
tWZ	MadGraph5_aMC@NLO	NLO	NNPDF2.3LO	Рутніа 8.212	A14	NLO			
tΖ	MadGraph5_aMC@NLO	LO	NNPDF2.3LO	Рутніа 8.212	A14	LO			
Single- and multi-bos	on production								
V + jets	Sherpa 2.2.1	NLO†	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO			
γ + jets	Sherpa 2.2.2	NLO†	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NNLO			
$aa \to V_\ell V_\ell$ or h	Sherpa 2.2.1	NLO	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO [‡]			
$gg \to V_\ell V_\ell \text{ or } h$	Sherpa 2.2.2	NLO	NNPFD3.0NNLO	Sherpa 2.2.2	Default	NLO [‡]			
$V_{\ell}V_{\ell}V$	Sherpa 2.2.2	NLO	NNPDF3.0NNLO	Sherpa 2.2.2	Default	LO			
$V_\ell V_h V_h$	MadGraph5_aMC@NLO	LO	NNPDF2.3LO	Рутніа 8.243	A14	LO			
$qq \rightarrow VH$	Powheg-Box v2	NLO	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NNLO(QCD) +NLO(EW)			
$gg \rightarrow ZH$	Powheg-Box v2	NLO	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NLO+NLL			

§ Here $\ell \ell$'s are from $Z^*/\gamma^* \to \ell \ell$.

[†] Produced with up to two extra jets at NLO and up to four extra jets at LO.

‡ For the diboson samples the cross-sections are calculated by the Monte Carlo generator at NLO accuracy in QCD.

Object definitions

Object	p_{T}	η	ID	Isolation
jets	> 20 GeV	< 4.5	Tight JVT	Ν
photon	> 150 GeV	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37$	tight IsEM	FixedCutHighPtCaloOnly
electron	> 7 GeV	$ \eta < 2.47$	Medium LLH	FCLoose
muon	> 7 GeV	$ \eta < 2.5$	Loose ID	FCLoose
taus	> 20 GeV	$ \eta < 1.37$ or $1.52 < \eta < 2.5$	Medium RNN	

- Particle-Flow jets, DL1r for b-tagging
- Three channels according to the decays of vector bosons (0L, 1L, and 2L)
 - > Missing- E_T triggers used in OL channel
 - ➢ Single lepton triggers used in 1L / 2L channel, and eµ CR
 - > Single gamma triggers used in γ +jets CR

Event selections

	Signal regions			Control regions		
	OL	1L (1L+/1L-)	2L	tī	V + jets	
Trigger	$E_{ m T}^{ m miss}$	single-lepton	single-lepton	single-lepton	single-photon	
Lepton or photon	0 <i>loose</i> leptons	= 1 <i>tight</i> electron with $p_T > 27 \text{ GeV}$ OR 1 <i>medium</i> muon with $p_T > 25 \text{ GeV}$, 0 additional <i>loose</i> leptons	= 2 <i>loose</i> leptons $(e^+e^- \text{ or } \mu^+\mu^-),$ ≥ 1 lepton with $p_T > 27 \text{ GeV},$ $81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$	= 2 <i>loose</i> leptons $(e^{\pm}\mu^{\mp}),$ \geq 1 lepton with $p_{\rm T} > 27 {\rm GeV}$	= 1 photon with $p_{\rm T} > 150 {\rm GeV},$ $0 loose {\rm leptons}$	
$\pmb{p}_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 150 \text{ GeV},$ $\mathcal{S}(E_{\rm T}^{\rm miss}) > 12,$ $ \Delta \phi(\boldsymbol{p}_{\rm T}^{\rm miss}, h) > 1$	$E_{\rm T}^{\rm miss} > 30 { m GeV}$				
Jets	\geq 4 jets with $p_{\rm T}$ > 20 GeV and passing the 85% <i>b</i> -tagging WP					

- At least four 85% b-tagged jets
- 1L channel split into 1L+ and 1L- according to the W boson charge
- Z boson mass window applied in 2L channel
- $e\mu$ CR for constraining ttbar, γ +jets CR for constraining V+jets
- Loose selection criteria, due to the low expected signal cross-sections

CRs

Two non-MJ CRs, to constrain main background

- ➢ eµ CR for constraining *ttbar*
- > γ +jets CR for constraining V+jets

γ+jets CR

- Exactly 0 charged leptons
- Exactly 1 photon
- $p_{T,\gamma} > 150 \text{ GeV}$
- HLT_g140_loose

SRs

- All masses calculated after rescaling the measured Higgs candidate mass to 125 GeV
- The NFs of backgrounds obtained from the background-only fits to the control and signal regions
- A \rightarrow ZH signal distributions at (m_A, m_H) = (800, 300) GeV normalized to the total background expectations overlaid (red dashed histograms)

Signal selection performance

- ➢ Products of signal acceptance and efficiency shown as functions of κ_{2V} and mass of *H*, for non-resonant *Vhh* and resonant *VH*, *H*→*hh* signal in 1L channel
- Structure in left plot reflects changes in event kinematic
- > Small decreases in right plot for high m_H values due to the highly boosted $h \rightarrow bb$ decays

MJ background estimation

 \succ γ +jets MJ CR > MJ CRs defined for 1L SR and γ +jets CR Extract MJ shape • Float it in fits Same selection but with inverted isolation • Entries ATLAS Internal γ+jets 8000 √s = 13 TeV ≥4 85% b-jets tī (nb≥4) GeV KS ATLAS Internal --- data tī (nb<4) Ω^{10000} Ldt = 139 fb⁻¹ Vs = 13 TeV 149 0 6000F Stat 149 0 Syst Events WHH→lybbbb, WIP Region ∎data 149 ttbar Shape 0 5000F > MJ CR single top 4000E 6000 Extract MJ shape 3000⊢ ٠ 2000 4000 ttX Obtain MJ yields 1000⊢ V+jets 2000 diboson data/MC (Data-Bkg)/Bkg ---- (Data-Bkg)/Bkg 1.5⊢ 0.4E Stat 0.2Ē Stat+Shape -0.2 Stat+Svs 0.5Ė -0.4E 0 t 450 500 10 12 150 200 250 6 14 100 300 350 400 8 mTV [GeV] $\Sigma(\text{pc b-tag score})$

Data-driven method to estimate the MJ background

16

Workflow of MJ estimation in 1L SR

BDT of data and sum of MC in MJ CR

BDT training

• ~15 variables based on kinematics

and *b*-tagging information

	Channel and signal model							
	0L		1]	L		21		
Variable	Vhh	VH	$A \rightarrow ZH$	Vhh	VH	Vhh	VH	$A \rightarrow ZH$
$m_{h_1} + m_{h_2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$m_{h_1} - m_{h_2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
N _{jets}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$H_{\mathrm{T}}^{\mathrm{ex}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\sum pc$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$m_{h_1}^{\text{FSR}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$m_{h_2}^{\text{FSR}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
m_{hh}	\checkmark			\checkmark		\checkmark		
p_{T}^{hh}	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
p_{T}^{V}				\checkmark	\checkmark	\checkmark	\checkmark	
m_{T}^{W}				\checkmark				
$\cosh(\Delta \eta)_1 - \cos(\Delta \phi)_1$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
$\cosh(\Delta \eta)_2 - \cos(\Delta \phi)_2$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
$ y_{h_1} - y_{h_2} $	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
$ y_V - y_{hh} $						\checkmark	\checkmark	

Validation regions

- > Exact 3 *b*-tagged jets instead of \geq 4 *b*-tagged jets
- Non-closure in VRs taken as systematic uncertainties
- BDT and kinematic distributions in VRs shown

Statistical analysis

Non-resonant Vhh

• Results mainly driven by the last bins with the highest BDT scores

Limits on non-resonant Vhh

- Upper limits set on Vhh cross-section as functions of κ_λ and κ_{2V}
- 95% CL upper limit of 183 (87) is observed (expected) on the Vhh cross-section relative to SM
- The observed (expected) 95% CL intervals of κ_{λ} and κ_{2V} are $-34.4 < \kappa_{\lambda} < 33.3$ (-24.1 < $\kappa_{\lambda} < 22.9$), and $-8.6 < \kappa_{2V} < 10.0$ (-5.7 < $\kappa_{2V} < 7.1$)

Resonant VH, H→hh

 $ZH, H \rightarrow hh$

WH, $H \rightarrow hh$, $m_H = 315 \text{ GeV}$

- Results mainly driven by the third bins with high BDT scores
- Local (global) significance: 2.5 (1.3) σ

Resonant A \rightarrow ZH, H \rightarrow hh

- → The most significant excess observed in the large-width (20%) A→ZH search at $(m_A, m_H) = (420, 320)$ GeV with a local (global) significance of 3.8 (2.8) σ
- More data needed to ascertain this excess!

Summary

- Search for non-resonant and resonant Vhh production presented using full Run 2 dataset collected by the ATLAS detector
- ➤ In the non-resonant search,
 - ➢ Upper limit of 183 (87) on µ observed (expected) for SM-like Vhh production
- > In the resonant VH, H \rightarrow hh search,
 - > Excess in ZH search at $m_H = 550 \text{ GeV}$ with local (global) significance of 2.7 (1.3) σ
 - > Excess in WH search at $m_H = 315 \text{ GeV}$ with local (global) significance of 2.5 (1.3) σ
- > In the resonant A \rightarrow ZH, H \rightarrow hh search,
 - ➤ The most significant excess observed in the large-width (20%) A→ZH search at (m_A, m_H) = (420, 320)
 GeV with a local (global) significance of 3.8 (2.8) σ
 - > More data needed to ascertain excesses!
 - Looking forward to Run 3 and HL-LHC!

Back Up

BDTs for resonant signals

- MC samples with different resonant masses are combined to form a signal sample for BDT training
- Curves below compare BDTs trained on one specific mass point vs. sum of all mass points vs. sum of all mass points with mass window cut
- Training on sum of all mass points with mass window cut (yellow) has similar performance with it on specific mass point (red)
- In the fits, select events based on BDTs as well as m_{hh} windows, for different mass points

BDTs for non-resonant signals

- The SM, κ_{λ} -, and κ_{2V} -only signal samples with equal statistics are added together to form a combined signal sample for BDT training
- Curves below compare BDTs trained on specific signal vs. combined signal (all)
- Training on combined signal (dashed line) has similar performance with it on specific signal

Event pre-selection for SR

- At least four 85% DL1r *b*-jets
- > Exactly one charged light lepton (e or μ)
- Exactly no tau
- \blacktriangleright E_T^{miss} > 30 GeV

Pre-fit distributions at pre-selection level (without NFs)

- mH=260 GeV: 250<mh<280 GeV
- mH=280 GeV: 260<mhh<300 GeV
- mH=300 GeV: 280<mh<320 GeV
- mH=400 GeV: 375<mh<425 GeV
- mH=500 GeV: 465<mhh<535 GeV
- mH=600 GeV: 555<mhh<645 GeV
- mH=700 GeV: 630<mhh<770 GeV
- mH=800 GeV: 725<mh<875 GeV
- mH=900 GeV: 805<mhh<995 GeV
- mH=1000 GeV: 890<mhh<1110 GeV
- *H* mass windows for different mass points of resonant *VH*, *H*→*hh* production
- Optimization shown in backup slides

Post-fit distributions with MJ contribution

- > MJ events presented as red histograms
- Good agreement between data and MC observed

Systematic uncertainties

- Object uncertainties (A) and \succ conventional theory uncertainties (B) generally have little impact
- Main impact from VR non-closure \succ uncertainties, normalization uncertainties of V+jets and ttbar (C), as well as MC statistical uncertainties

Name
FT_EFF_B_[0-1]1up
FT_EFF_C_[0-2]1up
FT_EFF_Light_[0-3]1up
Muon Eff. TTVA STAT
Muon Eff. Reco Syst. Low PT
Muon Eff. Reco Syst.
Muon Eff. Reco Stat. Low PT
Muon Eff. Reco Stat.
Muon Eff. TTVA Sys.
Muon Eff, ISO Sys.
Muon Eff. Iso Stat.
Muon ID
Muon Sagitta Rho
Muon MS
Muon Scale
Muon Sagitta Res Bias
EL Eff. Reco. Total 1 NP Corr + UnCorr
EL Eff. ID Total 1 NP Corr + UnCorr
EL Eff. Iso Tot. 1 NP Corr + UnCorr
EL Eff. Trigger Tot. 1 NP Corr + UnCorr
EG Scale All
EG Resolution All
PH Eff. ID Uncertainty
Jet JVT Eff.
Jet GR Jet Pile-up Offset Mu
Jet GR Jet Pile-up Offset NPV
Jet GR Jet Pile-up Rho Topology
Jet GR Jet Eff. NP [1-7]
Jet GR Jet Eff. NP 8 rest Term
Jet GR Jet Eta Inter-Calibration Modelling
Jet GR Jet Eta Inter-Calibration Tot. Stat.
Jet GR Jet Eta Inter-Calibration Non-Closure pos. Eta
Jet GR Jet Eta Inter-Calibration Non-Closure 2018 Data
Jet GR Jet Eta Inter-Calibration Non-Closure nign-E
Jet GR Jet Eta Inter-Calibration Non-Closure neg-Eta
Jet GR Jet Single Derticle High DT
Jet CD Let Eleven Composition
Let CR Let LED Eff. ND [1 6]
Jet CP Let JED Eff. ND 7 root Term
Jet GR Jet Piloup PT Torm
Jet GP. Jet Flavor Pasmonsa
JET GP Let Pel NonClosure AFU
JET OK JELKEL NOICIOSUIE AFIL
Jet GR Jet Punch Through AFII
MET Soft Trk Deso Derp
MET Soft Trk Reso Para
I umi
PRW Data SE

Α

Name		
$Matching(t\bar{t}+ \ge 1b)$		
$Matching(t\bar{t} + 0b + \ge 1c)$	Name	Shape or Norm.
$Matching(t\bar{t} + 0b + 0c)$	$\mu(t\bar{t}+\geq 1b)$	Norm
Shower $(t\bar{t}+\geq 1b)$	$\Delta u(t\bar{t} + 0b + 0c)$	Norm
Shower $(t\bar{t} + 0b + \ge 1c)$	$\Delta u(t\bar{t} + 0b + > 1c)$	Norm
Shower $(t\bar{t} + 0b + 0c)$	u(V+>3b)	Norm
Matching(s-top)	$\Delta u(V + < 2b + > 1c)$	Norm
Shower(s-top)	$\Delta \mu (V + \leq 2b + \geq 1c)$	Norm
Interference(s-top)	$\Delta \mu (v + \leq 2b + 6c)$	Norm
s-top_Scale_muR	$\Delta \mu(Z + \geq 50)$	Norm
s-top_Scale_muF	$\Delta \mu (Z + \leq 2b + \geq 1c)$	Norm
ttbar2b_ISR_a_s_up	$\Delta\mu(Z+\leq 2b+0c)$	Norm
ttbar2b_FSR_up	$\Delta\mu(W+\geq 3b)$	Norm
ttbar2b_NNLO	$\Delta\mu(W+\le 2b+\ge 1c)$	Norm
ttbar2b1c_ISR_a_s_up	$\Delta\mu(W+\le 2b+0c)$	Norm
ttbar2b1c_FSR_up	$\Delta\mu(t\bar{t}+V/t/t\bar{t})$	Norm
ttbar2b1c_NNLO	$\Delta \mu(t)$	Norm
ttbar4b_ISR_a_s_up	$\Delta \mu(VV)$	Norm
ttbar4b_FSR_up	$\Delta \mu(t\bar{t}h)$	Norm
ttbar4b_NNLO	$\Delta \mu (fakelepton)$	Norm
ttbar2b_Scale_muRmuF_up	$\Delta \mu(fake\gamma)$	Norm
ttbar2b_Scale_muR_up	L0 trig eff.	Shape+Norm.
ttbar2b_Scale_muF_up	LO TT up	Shape+Norm.
ttbar2b1c_Scale_muRmuF_up	L1 TT up	Shape+Norm
ttbar2b1c_Scale_muR_up	$L_2 TT_{up}$	Shape+Norm
ttbar2b1c_Scale_muF_up	HighPtExtranB up	Shape+Norm.
ttbar4b_Scale_muRmuF_up	VROI Non-closure norm	Norm
ttbar4b_Scale_muR_up	VPOL Non closure, horm.	Shana
ttbar4b_Scale_muF_up	VROL Non-closure, shape	Morm
t_FSR	VR2L Non-closure, norm.	Norm.
t_ISK_alpha_s	VR2L Non-closure, shape	Shape.
Z4b_Scale_mukmuF_up	VRIL+ Non-closure, norm.	Norm.
Z4b_Scale_muR_up	VRIL+ Non-closure, shape	Shape.
Z4b_Scale_muF_up	VR1L- Non-closure, norm.	Norm.
Z2b1c_Scale_muRmuF_up	VR1L- Non-closure, shape	Shape.
Z2b1c_Scale_muR_up	VREMU Non-closure, norm.	Norm.
Z201C_Scale_muF_up	$\Delta \mu$ (fake lepton shape0)	Shape
Z2b_Scale_mukmuf_up	$\Delta \mu$ (fake lepton shape1)	Shape
Z_{2b} Scale muk_up	$\Delta \mu$ (fake γ contam)	Shape
Z2D_Scale_mur_up		
9988	\sim	

В

27

Display of 0L candidate event

- Run number: 350121
- Event number: 876442950
- E_T^{miss} = 556.845 GeV

	b-jet 1	b-jet 2	b-jet 3	b-jet 4
pT (GeV)	394.555	111.069	191.720	58.895
eta	-0.759	-0.491	-0.813	-0.841
phi	0.869	0.408	2.497	1.485

Display of 1L candidate event

- Run number: 355754
- Event number: 1008833929
- Exact 1 good electron
- E_T^{miss} = 64.898 GeV

	electron	b-jet 1	b-jet 2	b-jet 3	b-jet 4
pT (GeV)	326.610	257.846	49.554	98.075	52.136
eta	1.831	0.107	-0.237	-0.571	-1.791
phi	-1.639	1.292	2.193	1.812	1.607

