Searches for HH in the $b\overline{b}\tau^+\tau^-$ channel with ATLAS

2022/07/26

Zhiyuan Jordan Li (李致源) Higgs Potential 2022

bbbb

Motivation: DiHiggs searches

- Di-Higgs searches is of uttermost importance, however...
 - Cross-section is very small: $\sigma_{gg \rightarrow HH}$ = 31.05 fb at 13 TeV, due to:
 - Box diagram destructively interfere with triangle diagram
 - Small phase space
 - Though in many BSM...
 - modify the interaction strength (or add anomalous interaction),
 - or enhanced greatly via BSM resonances

EFT interpretation: Motivation

- Effective Field Theory (EFT) interpretation on di-Higgs searches
- Two EFT frameworks available:

SM: $c_{hhh} = c_{tth} = 1$ and $c_{ggh} = c_{tthh} = c_{gghh} = 0$.

- HH searches present constraints on:
 - k_{λ} (c_{hhh}) or
 - C_{tthh}, C_{gghh}

Motivation: $bb\tau\tau$ channel

- Combines the advantages of high branching ratio and clean background
 - ...relative to the bbyy and bbbb channels

	$\mathrm{b}\overline{\mathrm{b}}$	W^+W^-	$ au^+ au^-$	ZZ^*	$\gamma\gamma$
bb	34 %				
W^+W^-	25 %	4.6 %			
$\tau^+\tau^-$	7.3 %	2.7 %	0.39 %		
ZZ^*	3.1 %	1.1 %	0.33 %	0.069 %	
$\gamma\gamma$	0.26 %	0.097 %	0.028 %	0.012 %	0.00052 %

- Further divided into $\tau_{lep} \tau_{had}$ (Lephad) and $\tau_{had} \tau_{had}$ (Hadhad) channels
 - Based on the decay mode of the two au-leptons

Analysis: Introduction

- Workflow:
 - Trigger selection
 - Reconstruction and event selection
 - Background and uncertainties estimation
 - Statistical analysis
 - Results!

Single Lepton Triggers (SLT)					
Period	Single Electron Triggers (SET)	Single Muon Triggers (SMT)			
2015	HLT_e24_lhmedium_L1EM20VH HLT_e60_lhmedium HLT_e120_lhloose	HLT_mu20_iloose_L1MU15 HLT_mu50			
2016 & 2017 & 2018	HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0	HLT_mu26_ivarmedium HLT_mu50			

- Triggers:
 - A set of triggers is used, for...
 - Lephad: Single Lepton Triggers (SLT) + Lepton plus Tau Triggers (LTT)
 - Hadhad: Single Tau Triggers (STT) + Di-Tau Triggers (DTT)

SM ggF + VBF non-resonant, and

Signal targeting:

٠

Non-resonant MC

Channel	$A imes \epsilon$
$\tau_{had}\tau_{had}$	4%
$ au_{lep} au_{had}$ (SLT)	4%
$\tau_{lep}\tau_{had}$ (LTT)	1%

HadhadLephad SLTLephad LTTSingle & di- τ_{had} triggerssingle ℓ triggers $\ell + \tau_{had}$ triggersexactly two τ_{had} exactly one τ_{had} & one e or μ lepton-veto $m_{bb} < 150$ GeVtrigger-dependent thresholds on $e/\mu/\tau_{had}$ and jets $m_{\tau\tau}^{MMC} > 60$ GeV2 b-tagged jetsOS el. charge of $\tau e/\tau \mu/\tau_{had}$ and τ_{had}

Generic narrow width scalar particle with mass 251 GeV ~ 1600 GeV

Resonant MC

Background estimation

- Dominant background simulated:
 - $t\bar{t}$ and single top (normalised in fit)
 - V (W, Z) + jets (normalised in fit dedicated CR)
 - Single SM Higgs/Other (simulation)
- Data-driven background:
 - Background due to a τ_{had} is fake by a jet (data-driven method)

Fake background estimation

 $t\bar{t}$ FF-CR, with fake background simulated by MC (not doing a good job!)

Systematics Uncertainties

Experimental Systematics covering:

- Luminosity, pileup reweighting
- Physics objects reconstruction and identification: Tau, leptons, Jet, vertex...
- b-tagging
- And more on triggers, energy scale, resolution...
- ~110 in total! Each are run independently for all samples

Modelling Systematics:

- Theory uncertainties on cross section
- Uncertainties on acceptance:
 - Signal: Non-resonant + resonant
 - $t\bar{t}$, Single top
 - Z+jets •
 - Single Higgs
 - + other minor background

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 ********************* THEO_ACC_StopWt_TopInterference LepHad_SLT_SR_MVAScore_bin_14 THEO_ACC_Zhf_SCALE ttReweighting LepHad_SLT_SR_MVAScore_bin_13 THEO_ACC_HF_ggFH THEO_ACC_StopWt_FSR LepHad LTT SR MVAScore bin 14

THEO_XS_SCALEMTop_ggFSMHH LepHad_SLT_SR_MVAScore_bin_12 FFVarrQCD tt normalisation LepHad_LTT_SR_MVAScore_bin_13 Subtraction bkg THEO_ACC_StopWt_PS √s = 13 TeV ATLAS 139.0 fb⁻¹ 1σ Postfit Impact on Internal SM HH -1.5 -1 -0.5 0 0.5 1 1.5

Single-top uncertainty due to the interference term

 $\Delta \mu / \Delta \mu$

Statistical analysis: Non-resonant

Non-resonant production

- Signal / background classifiers provide discriminant for likelihood fit
 - $\tau_{had}\tau_{had}$: Boosted Decision Trees
 - $\tau_{lep}\tau_{had}$: Neural Networks
- Trained on signal vs. all backgrounds using high-level variables:
 - E.g. m_{HH} , m_{bb} , $m_{\tau\tau}^{MMC}$, $\Delta R(\tau, \tau)$, more in backup

Statistical analysis: Resonant

Resonant production

- Parametrised neural networks (PNN) as discriminant
 - Same for Lephad and Hadhad
- Provide single classifier (per channel) for all considered m_X
 - Achieving high sensitivity for each mass points, and
 - also able to interpolate across them

Motivation: $bb\tau\tau$ channel

Event display: $b ar{b} au_{\mu} au_{had}$

Results: Limits

- Upper limit on $\sigma_{ggF+VBF}^{HH}$: obs. 4.7 × σ_{SM} (exp. 3.9 × σ_{SM})
 - Highest expected sensitivity to date
- Upper limits on $\sigma_X \rightarrow$ HH for narrow-width scalars ranging from approx. 20–10³ fb
 - Largest excess at 1 TeV with local (global) significance of 3.0σ (2.0 σ)

Results: k_{λ} , c_{tthh} , c_{gghh} scan

Results: HEFT Benchmarks

Benchmark	Ct	Chhh	Ctt	Cggh	Cgghh
SM	1	1	0	0	0
1	0.94	3.94	-0.333	0.5	0.333
2	0.61	6.84	0.333	0	-0.333
3	1.05	2.21	-0.333	0.5	0.5
4	0.61	2.79	0.333	-0.5	0.167
5	1.17	3.95	-0.333	0.167	-0.5
6	0.83	5.68	0.333	-0.5	0.333
7	0.94	-0 10	1	0 167	-0 167

• 7 benchmarks of HEFT framework

- represent the different shapes of m_{HH}
- Using a similar reweighting method used for 1-d scan

ATL-PHYS-PUB-2022-019

- A short tour in the bb au au analysis...
- Fruitful results produced!
 - Limits on di-Higgs production cross sections, k_{λ} , c_{tthh} , c_{gghh} and 7 HEFT benchmarks
 - World leading upper limit on non-resonant production
 - Excess around 1TeV resonance mass with 2σ global significance
- Stay tuned in Run 3 for more exciting results!

Lepton Tau Triggers (LTT)

Electron Tau Triggers (ETT)

HLT_e17_lhmedium_nod0_tau25_medium1_tracktwo HLT_e17_lhmedium_nod0_ivarloose_tau25_medium1_tracktwo HLT_e17_lhmedium_nod0_ivarloose_tau25_medium1_tracktwoEF HLT_e17_lhmedium_nod0_ivarloose_tau25_medium1_tracktwoEF_L1EM15VHI_2TAU12IM_4J12 HLT_e17_lhmedium_nod0_ivarloose_tau25_medium1_tracktwoMVA HLT_e17_lhmedium_nod0_ivarloose_tau25_mediumRNN_tracktwoMVA HLT_e17_lhmedium_nod0_ivarloose_tau25_mediumRNN_tracktwoMVA

Muon Tau Triggers (MTT)

HLT_mu14_tau25_medium1_tracktwo HLT_mu14_ivarloose_tau25_medium1_tracktwo_L1MU10_TAU12IM_3J12 HLT_mu14_ivarloose_tau25_medium1_tracktwoEF_L1MU10_TAU12IM_3J12 HLT_mu14_ivarloose_tau25_mediumRNN_tracktwoMVA_L1MU10_TAU12IM_3J12 HLT_mu14_ivarloose_tau35_medium1_tracktwo HLT_mu14_ivarloose_tau35_medium1_tracktwoEF HLT_mu14_ivarloose_tau35_medium1_tracktwoMVA

Backup: Object selection

Electrons:

Loose e-ID, loose isolation

 $p_{\mathrm{T}} > 7\,\mathrm{GeV}$, $|\eta| <$ 2.47 + crack veto

Muons:

Loose muons, PflowLoose_VarRadIso isolation

 $p_{
m T} > 7\,{
m GeV}$, $|\eta| < 2.7$

Taus:

Loose RNN Tau-ID, loose electron-veto $p_{\rm T}>$ 20 GeV, $|\eta|<$ 2.5 + crack veto

Anti-Taus:

Fail loose RNN Tau-ID & RNN score > 0.01

Jets: Anti- $k_t R = 0.4$ PFlow Jet cleaning & tight JVT $p_T > 20$ GeV, $|\eta| < 2.5$

b-tagging: DL1r with 77% eff. WP

MET:

PFlow MET (TST)

OLR:

ASG OLR tool (Standard WP) with dedicated jet- τ_{had} OLR:

 τ_{had} > b-tagged jet > anti- τ_{had} > un-tagged jet

Variable	SLT	LTT
<i>m_{HH}</i>	1	1
$m_{\tau\tau}^{MMC}$	1	1
m _{bb}	1	1
$\Delta R(\tau,\tau)$	1	1
$\Delta R(b,b)$	1	
$\Delta p_{\mathrm{T}}(\ell, \tau)$	1	\checkmark
Sub-leading <i>b</i> -tagged jet $p_T (p_T^b 2)$	1	
m_{T}^W	~	
$E_{\mathrm{T}}^{\mathrm{miss}}$	~	
$E_{\rm T}^{\rm miss} \phi$ centrality	1	
$\Delta \phi(\ell au, bb)$	~	
$\Delta \phi(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$		~
$\Delta \phi(\ell \tau, E_{\mathrm{T}}^{\mathrm{miss}})$		1
ST		~

Fit	$ au_{had} au_{had} SR$	$ au_{ ext{lep}} au_{ ext{had}}$ SLT SR	$ au_{ ext{lep}} au_{ ext{had}}$ LTT SR	Z+HF CR
Resonant HH	PNN score	PNN score	PNN score	m _{ℓℓ}
Non-resonant HH	BDT score	NN score	NN score	m _{ℓℓ}

- MVA scores rebinned to optimize sensitivity while limiting background stat. uncertainty
- Fit to MVA score in three SRs with $\mu = \sigma/\sigma_{ref}$ as POI
 - Non-resonant HH (ggF+VBF): $\sigma ref = \sigma_{SM}^{ggF+VBF}$ (mH = 125 GeV)
- Resonant HH: $\sigma_{ref} = 1 \text{ pb} \times \text{BR}$
- $t\bar{t}$ and Z+HF normalisation determined from data

NP Correlation scheme:

- Experimental uncertainties (CP) are correlated between regions
- Cross section and acceptance uncertainties are correlated
- Rel. acceptance uncertainties originating from the same source are correlated between regions

Combination Results: Non-resonant and Resonant

	Obs.	$ -2\sigma$	-1σ	Exp.	1σ	2σ
$b\overline{b}\gamma\gamma$	4.3	3.1	4.1	5.7	8.8	14.3
$b\overline{b}\tau^+\tau^-$	4.6	2.1	2.8	3.9	5.9	9.4
Combined	3.1	1.7	2.2	3.1	4.7	7.3

ATLAS-CONF-2021-030