

Institute of High Energy Physics Chinese Academy of Sciences

### **HH Combination in CMS**



Jin Wang<sup>1</sup>

On behalf of the CMS Collaboration

1. Institute of High Energy Physics, CAS

26<sup>th</sup> July 2022

Higgs Potential 2022

### HH measurement

- 2
- HH measurement directly probes Higgs self-coupling
  - Crucial for understanding the Higgs field potential
    - Involved in early universe and defines its fate





### • HH production sensitive to BSM effects

- Modified couplings,  $k_{\lambda}$ ,  $k_{2V}$ ,  $k_V$ ,  $k_t$ 
  - $k_{\lambda} = \lambda / \lambda_{SM}$
- Additional coupling,  $c_2, c_g, c_{2g}$
- Resonant production

# Focus on non-resonant HH production and SM interpretation based on <u>Nature article</u> July 4<sup>th</sup> 2022

Higgs Potential 2022

#### nature

Explore content 🗸 About the journal 🖌 Publish with us 🗸

nature > articles > article

#### Article | Open Access | Published: 04 July 2022

### A portrait of the Higgs boson by the CMS experiment ten years after the discovery

#### The CMS Collaboration

<u>Nature</u> 607, 60–68 (2022) | <u>Cite this article</u> 10k Accesses | 2 Citations | 401 Altmetric | <u>Metrics</u>

# HH production modes

### • HH production challenging to measure due to it small cross section

- $\sigma_{HH} \sim \frac{\sigma_H}{1000}$  in SM at 13TeV
- Two main production modes
  - $\sigma_{ggF} = 31.05 \, fb \, \text{SM} @13 \text{TeV}$ 
    - Dominant channel for studying self-coupling
    - Destructive interference
  - $\sigma_{VBF} = 1.73 \, fb$  SM @13TeV
    - Only channel to access quartic VVHH coupling
- Spectrum of  $m_{HH}$  depends on  $k_{\lambda}$ 
  - Softer for large  $|k_{\lambda}|$







Higgs Potential 2022

# **CMS HH combination**

- Best HH sensitivity via combination of all available decay channels
  - Using full Run 2 data with 138  $fb^{-1}$

4

- Included the most sensitive channels
- All final states defined to be mutually exclusive

| Channel       | reference        |
|---------------|------------------|
| bbbb resolved | arXiv:2202.09617 |
| bbbb boosted  | arXiv:2205.06667 |
| bbττ          | arXiv:2206.09401 |
| bbγγ          | JHEP03(2021)257  |
| bbZZ          | arXiv:2206.10657 |
| multilepton   | arXiv:2206.10268 |



- HH searches evolution since 2016 besides more data
  - Selections targeting VBF HH production mechanism
  - Extensive usage of machine learning, selection/tagging optimization
  - Boosted topologies, additional final states

Higgs Potential 2022

### CMS $HH \rightarrow bbbb$ resolved

- Final state with four b-jets, plus extra jet pair for VBF HH signal
  - highest branching fraction, large multijet background
  - Measuring both ggF and VBF production of HH
  - reconstruct HH candidate using 4 jets for ggF
  - require additional 2 jets for VBF events
  - use dedicated BDTs to separate different signals and backgrounds
  - large multijet background estimated from data and fitted simultaneously in multiple signal regions



Higgs Potential 2022

Tuesday, July 26, 2022

### CMS $HH \rightarrow bbbb$ boosted

- Final state with two AK8 jets (+extra jet pair in VBF HH)
  - Boosted H→bb candidate(s) reconstructed as large radius jet(s)
  - Using jet substructure info "ParticleNet" tagger to identify boosted H decays
  - DNN b-jet energy regression to improve H→bb mass resolution
- Main backgrounds from QCD and tt
  - Fit/correction from control regions
- 3 ggHH enriches categories

6

- BDT classifier to separation/categorization
- Signal extraction: fit to subleading jet mass
- 3 VBFHH enriched categories
  - Classification on ParticleNet score
  - signal extraction from fit to m<sub>HH</sub>



Higgs Potential 2022

### CMS $HH \rightarrow bbbb$ boosted results

- Very good constraints on HH signal strength and  $k_{\lambda}$ 
  - $\sigma_{ggF+VBF}^{HH} < 9.9(5.1) \times \sigma_{ggF+VBF}^{HH SM}$
  - $-9.9(-5.1) < k_{\lambda} < 16.9(12.2)$
- $k_{2V} = 0$  firstly excluded at >5 $\sigma$  assuming  $k_{\lambda} = k_t = k_V = 1$ 
  - 0.62 (0.66)  $< k_{2V} < 1.41 (1.37)$





### $\mathsf{CMS} \ HH \to bb\tau\tau$

- 8
- Triggers based on leptons and hadronic taus
  - di-τ trigger with or without jets
  - Single-e, e-t, single-mu and  $\mu$ -t triggers
- Leading background from QCD, ttbar and DY events
  - Estimated using data-driven or control regions
- Event categorization on production mode and final state
- DNN classifiers to separate signal and backgrounds
- Signal extraction from fit to DNN score

Most stringent limits on inclusive HH (observed) and VBFHH:

 $\sigma_{ggF+VBF}^{HH} < 3.3(5.2) \times \sigma_{ggF+VBF}^{HH SM},$  $\sigma_{VBF}^{HH} < 124(154) \times \sigma_{VBF}^{HH SM},$ 

 $-1.8(-3.0) < k_{\lambda} < 8.8(9.9)$  $-0.4(-0.6) < k_{2V} < 2.6(2.8)$ 





Higgs Potential 2022

# $\mathsf{CMS} \ HH \to bb\gamma\gamma$

- Final states: 2 photons and 2 b-jets
  - very small BR, clean signal extraction due to the narrow  $h \rightarrow \gamma \gamma$  mass peak
- Main backgrounds:  $\gamma \gamma + jets$ ,  $\gamma + jets$ , ttH
- Besides ggF production mode, VBF production is also studied
- Two Boosted Decision Trees (BDTs) are trained to separate HH signal and backgrounds
  - 1 for ggF, 1 for VBF
- To reduce ttH background contamination, a dedicated Deep Neural Network (DNN) was developed
  CMS
  137 fb<sup>-1</sup> (13)
- Category optimized to enhance sensitivity to SM and anomalous couplings
  - 2 VBF categories, 12 ggF categories
- The HH signal is extracted from a 2D fit to the invariant mass of the two Higgs bosons  $(m_{\gamma\gamma}, m_{bb})$

in the final state simultaneously in all categories.

### JHEP 03 (2021) 257



### CMS $HH \rightarrow bb\gamma\gamma$ results

No deviations from SM observed

10

• Obs.(exp.) upper limit on HH signal strength 7.7(5.2)×SM



#### JHEP 03 (2021) 257

### CMS $HH \rightarrow bbZZ$ with Run2 data

- ggF  $HH \rightarrow bbZZ$  channel with final states of two b-jets and two pairs of opposite-charge leptons (4 $\mu$ , 4e, 2 $\mu$ 2e): arXiv:2206.10657
  - 9 BDTs are trained for each data-taken year and each final state channels to separate signal and backgrounds
  - signal region is defined with  $m_{4l} \sim m_H$
  - multi-dimensional binned fit to the BDT distribution in data is performed to extract the signal





Observed (expected) limits at 95% CL:  $\sigma_{ggF}^{HH} < 30(37) \times \sigma_{ggF}^{HH SM}$ 

Higgs Potential 2022

# HH→Multilepton (WWWW, WWTT, TTTT)

#### 12

- HH->WWWW, WWTT, and TTTT final states with μ, e, or τ<sub>h</sub>
  - 7 event categories with final states of 2lss, 3l, 4l, 3l+1τ<sub>h</sub>, 2l+2τ<sub>h</sub>, 1l+3τ<sub>h</sub>, 0l+4τ<sub>h</sub>
  - AK4/AK8 jets requirements in 2lss and 3l categories
  - Selections on m(I+I-) to reduce DY and ZZ bkg
- Background dominated by di-boson and events with mis-identified I or τ<sub>h</sub>
  - Data-driven modelling for fakes and MC modelling for others
- BDT classifiers to separate signal from background
  - Optimized separately for SM and BSM models
- Observed (expected) results:
  - $\sigma_{HH} < 21.3(19.4) \times \sigma_{HH}^{SM}$
  - $-6.9(-6.9) < k_{\lambda} < 11.1(11.7)$



# HH signal modeling in combination

- Continuous morphing between discrete ( $\mathbf{k}_{\lambda}$ ,  $\mathbf{k}_{2V}$ ,  $\mathbf{k}_{V}$ ,  $\mathbf{k}_{t}$ ) points
  - One MC per point

13

ggF
$$D_{gghh}(k_{\lambda}, k_{t}) = r \cdot r_{gghh} \cdot \sum_{i}^{3} f_{gghh}^{i}(k_{\lambda}, k_{t}) \cdot D_{gghh}^{i}$$
VBF $D_{qqhh}(k_{2V}, k_{V}, k_{\lambda}) = r \cdot r_{qqhh} \cdot \sum_{i}^{6} f_{qqhh}^{i}(k_{2V}, k_{V}, k_{\lambda}) \cdot D_{qqhh}^{i}$ Morphed shapeMorphing coeff.  
for point iMC shape  
for point i

- Also take into account additional model/systematic dependence
  - $\mathbf{k}_{\lambda}$  dependent QCD scale +  $m_{top}$  signal uncertainty
  - Scaling of single H background cross sections with **k**'s
  - Scaling of H branching fractions with **k**'s for signal and single H background

# Systematic uncertainties

### • Experimental uncertainties

- Common with all channels
  - luminosity, Jet resolution and scales, b-tagging, missing ET, tau/lepton identification, trigger, pile up, MC statistics etc.
- Channel specific
  - mostly background estimation uncertainties, scales or constrained from control regions

### Theoretical uncertainties

• HH Signal

14

- Higgs branching ratios in HH
- PDF +  $\alpha_s$
- QCD scale +  $m_{top}$ , k $\lambda$  dependent
- Shower modelling
- Backgrounds
  - Higgs branching ratios for single H
  - PDF,  $\alpha_s$ , QCD scale
  - EWK corrections
  - modeling of ISR/FSR etc.

# Limits on the HH production and their time evolution

15



• Expected and observed upper limits of HH production cross section

- Presented as ratios of measured HH cross section and the expectation from the SM
  - Observed (expected) 95% CL Upper limits:  $3.4 (2.5) \times SM$
- Compared to early Run 2 results (35.9 fb<sup>-1</sup>) and HL-LHC expectation (3000 fb<sup>-1</sup>)
  - Significant improvement comparing to early Run 2 results
  - Sensitivity in HL-LHC sufficient to establish the existence of the SM HH production

### HH production cross-section limits with k $\lambda$ , k2V

#### 16

- 95% CL interval for Higgs boson self-interaction coupling modifier  $\kappa_{\lambda}$ 
  - [-1.24, 6.49]
- 95% CL interval for  $\kappa_{2V}$ 
  - [0.67, 1.38]
- $\kappa_{2V} = 0$  is excluded with a significance of 6.6 $\sigma$ , assuming  $k_{\lambda} = k_{V} = k_{t} = 1$



Higgs Potential 2022

# Summary

- Non-resonant HH combination results in CMS with 138 fb<sup>-1</sup> data
  - Contributing channels

17

- bbbb (resolved+boosted),  $bb\tau\tau$ ,  $bb\gamma\gamma$ , bbZZ(4I), multilepton
- All results agree with SM prediction
- Best sensitivity on HH production limits with the combination:
  - Observed  $\sigma_{HH} < 3.4 \times \sigma_{HH SM}$  (2.4 expected) @ 95% CL
- Constraints on k<sub>λ</sub> with 95% CL interval
  k<sub>λ</sub> ∈ [-1.24, 6.49]
- Constraints on k<sub>2V</sub> with 95% CL interval
  *k*<sub>2V</sub> ∈ [0.67, 1.38]
- Exclusion of the  $k_{2V} = 0$ 
  - With 6.6 $\sigma$  assuming  $k_{\lambda} = k_{V} = k_{t} = 1$
- More impressive results expected with addition channels in Run2 as well as the H+HH, ATLAS+CMS combination in future







# Back Up

# Old HH combination

19

- Both ATLAS and CMS have performed HH combination with partial Run2 data
  - 27.5-36.1 fb<sup>-1</sup> data for ATLAS, 35.9 fb<sup>-1</sup> data for CMS
  - only consider ggF HH production



Observed (expected) limits at 95% CL:

- ATLAS:  $\sigma^{HH}_{ggF} < 6.9~(10) \times \sigma^{HH~SM}_{ggF}$
- CMS:  $\sigma^{HH}_{ggF} < 12.8~(22.2) \times \sigma^{HH~SM}_{ggF}$
- ATLAS:  $-5 (-5.8) < \kappa_{\lambda} < 12 (12.0)$
- CMS:-11.8 (-7.1) <  $\kappa_{\lambda}$  < 18.8 (13.6)

### Lepton collider vs hadron collider

• Future lepton collider like CEPC will be practically free of systematic uncertainties

20

- an order of magnitude or more improvement in precision in most Higgs measurements and many electroweak observables
- search for potential unknow decay modes that are impractical at hadron colliders



Higgs Potential 2022

Tuesday, July 26, 2022