

Measurement of the Higgs boson differential fiducial cross sections in the four-lepton decay channel in pp collisions at 13 TeV

Eur. Phys. J. C 81 (2021) 488

Mingshui Chen (IHEP), Li Yuan, Tongguang Cheng, <u>Qianying Guo,</u> <u>Tahir Javaid</u> (Beihang University)

On behalf of CMS collaboration

Higgs Potential 2022, Peking University

Outline

*****Theoretical Background and motivation

***The CMS detector**

 $\ast Higgs production and decay (LHC)$

Motivation for 4 lepton decay channel

*Higgs Differential Cross section measurement / Analysis strategy

Motivation

- •Event Selection and reconstructions
- Overview and definition of fiducial volume
- •Extracting the cross section
- ***Systematic Uncertainties**
- ***Results**

***Outlook**

*Summary

AI

Theoretical Background

*Standard Model: A framework conceived to describe the fundamental particles and nature of interactions (gauge fields)

• Higgs mechanism: for massive gauge bosons

- *The discovery of the Higgs boson in 2012 opened a new sector of investigations
 - Higgs properties measurements
 - Search for new / invisible particles interacting with the Higgs
 - SM an incomplete theory: It cannot explain many observations: Gravity, baryon asymmetry, dark matter, B meson Decay Anomalies, etc

Standard Model of Elementary Particles

The CMS detector

4

Higgs Production at LHC

*Significant increase in production cross section from 8 TeV (Run1 2012) to 13TeV (Run2)

*^o13TeV / ^o8TeV of Higgs: ggH ~2.3, VBF ~2.4, VH ~2.0 and ttH ~3.9

• background increased by a factor of ~2

Higgs Decays: H→ZZ→ 4I decay mode and its motivation

- * $\sigma \times Br (H \rightarrow ZZ \rightarrow 4I)$ quite small
 - Needs highest selection efficiency possible
 - Efficient lepton identification over a broad p_T range

- *Event Signature:
 - \bullet 4 leptons (4e, 4µ, 2e2µ)
 - Large S/B ratio (> 2:1)
 Good mass resolution (1-2%)
 - Four isolated leptons from one point in 3D space
- *Benefits from excellent electron and muon energy resolution

Motivation for the measurements

*Inclusive and Differential measurements performed

*Possible differential measurement observables

• Higgs kinematics: Rapidity and transverse momentum (p_T) of the four-lepton system

• sensitive to production modes, QCD modeling, PDF

● Jet observables : njets, leading jet pT

 VBF sensitive variables; sensitive to production modes, QCD modelling

• Decay variables: like |cosθ*|

Sensitive to spin/CP of Higgs boson

Event selection and reconstructions

* Loose e (μ) passing selections $P_T > 7(5)$ GeV; $|\eta| < 2.5(2.4)$; vertex cut $d_{xy} < 0.5 \ cm$; $d_z < 1 \ cm$; $SIP_{3D} < 4$; BDT Selections (RelPFIso($\Delta R = 0.3$) < 0.35);

* Z candidate

• Any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120 \text{ GeV}$

* Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z₁ candidate with $m_{ll(\gamma)}$ closest to the POG m(Z) mass

• $m_{Z1} > 40 \text{ GeV}; P_T(l1) > 20 \text{ GeV}; P_T(l2) > 10 \text{ GeV}$

- $\Delta R > 0.02$ between each of the four leptons
- $m_{ll} > 4$ GeV for OS pairs (regardless of flavour)

• Reject 4μ and 4e candidates where the alternative pair $Z_a Z_b$ satisfies $\left| m_{Za} - m_Z \right| < \left| m_{Z1} - m_Z \right|$ and $m_{Zb} < 12 \text{ GeV}$ • $m_{4l} > 70 \text{ GeV}$

 $* Z_1$ is chosen from lepton pairs whose mass is closest to PDG Z mass

 $* Z_2$ is chosen from the candidates whose lepton pair gives higher pT sum

Overview and definition of the fiducial volume

*Fiducial cross sections are necessary because acceptance has a strong model dependence e.g. between SM production modes by up to 60%

Correction for detector effects on the measurement

• Easy interpretations for theorists

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	$f_{ m nonfid}$	$(1 + f_{\text{nonfid}})\epsilon$
ggH (POWHEG)	0.402 ± 0.001	0.598 ± 0.002	0.054 ± 0.001	0.631 ± 0.002
VBF	0.445 ± 0.002	0.615 ± 0.002	0.043 ± 0.001	0.641 ± 0.003
WH	0.329 ± 0.002	0.604 ± 0.003	0.078 ± 0.002	0.651 ± 0.004
ZH	0.340 ± 0.003	0.613 ± 0.005	0.082 ± 0.004	0.663 ± 0.006
tīH	0.315 ± 0.004	0.588 ± 0.007	0.181 ± 0.009	0.694 ± 0.010

Overview and definition of the fiducial volume

*Fiducial cross sections are necessary because acceptance has a strong model dependence e.g. between SM production modes by up to 60%

Correction for detector effects on the measurement

Number of measured

Branching fraction

Integrated luminosity

signal events

 ${\scriptstyle \odot} {\rm Easy}$ interpretations for theorists

N

reco.i

Acceptance

Cross section

Correction for detector

efficiency

bin i

Overview and definition of the fiducial volume

Defined to closely match the detector's acceptance.

Requirements for the $H \rightarrow 4\ell$ fiducial phase space

Lepton kinematics and isolation	
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20{ m GeV}$
Next-to-leading lepton $p_{\rm T}$	$p_{\rm T} > 10 {\rm GeV}$
litional electrons (muons) $p_{\rm T} > 7(5) {\rm GeV}$	
Pseudorapidity of electrons (muons)	$ \eta < 2.5$ (2.4)
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\rm T}$
Event topology	
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above	
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4{ m GeV}$
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140 { m GeV}$

Eur. Phys. J. C 81 (2021) 488

Background Estimation (2 types)

- * Irreducible background
 - Production of ZZ via $q\bar{q}$ annihilation or gluon fusion
 - Estimated using **simulation**
- * **Reducible** background (Z+X)
 - Secondary leptons produced by heavy-flavor jets
 - Misidentified as leptons from decay of heavy-flavor hadron, in-flight decays of light mesons within jets, or (for electrons) decay of charged hadrons overlapping with π^0 decays.
 - Estimated with data using independent OSSF method and SSSF method
 - Fake rates calculated in Z+I control region
 - Z+X yields estimated in 2 orthogonal regions of Z+II control region
 - Final estimate combination of 2 methods

Distribution of reconstructed four-lepton invariant mass

Measuring the cross section

Measured by performing a maximum likelihood fit of the signal and background parameterisations to the observed 4I mass distribution

Result of a simultaneous fit

Measurements are performed considering Higgs mass = 125.38 GeV

- * Experimental uncertainties
 - Depending on the year of data taking
 - Integrated luminosity
 - Lepton identification and reconstruction efficiency
- * Theoretical uncertainties
 - Renormalization and factorization scale and choice of PDF set
- * In combination of the three-year data, the theoretical uncertainties and experimental ones related to leptons or jets are treated as **correlated** while all other ones from experimental sources are taken as **uncorrelated**.

Common experimental uncertainties			
	2016	2017	2018
Luminosity	2.6 %	2.3 %	2.5 %
Lepton identification/reconstruction efficiencies	1.2 – 15.5 %	1.1 – 12 %	0.7 – 11 %
Background related uncertainties			
Reducible background (Z+X)	31 – 42 %	31 – 38 %	31 –37 %
Signal related uncertainties			
Lepton energy scale	0.04 – 0.3 %	0 %	0%
Lepton energy resolution	20 %	20 %	20 %

Summary of inclusive theory uncertainties			
$BR(H \rightarrow ZZ \rightarrow 4\ell)$	2 %		
QCD scale ($q\bar{q} \rightarrow ZZ$)	+3.2/-4.2 % %		
PDF set ($q\bar{q} \rightarrow ZZ$)	+3.1/-3.4 %		
Electroweak corrections (qq	\rightarrow ZZ) $\pm 0.1 \%$		

Results: Inclusive cross section

Measured cross section at 137 /fb $\sigma_{\rm fid} = 2.84^{+0.34}_{-0.31} = 2.84^{+0.23}_{-0.22} \,(\text{stat})^{+0.26}_{-0.21} \,(\text{syst}) \,\text{fb}$

Previous CMS measurement at 35.9 /fb (HIG-16-041) $\sigma_{\rm fid} = 2.92 \, {}^{+0.48}_{-0.44} \, ({\rm stat}) \, {}^{+0.28}_{-0.24} \, ({\rm syst}) \, {\rm fb}.$

- * Results consistent with SM predictions within the associated uncertainties
- * More precise w.r.t CMS earlier measurements

Results: Differential cross section

*Differential cross section measured for p_T(H), |y(H)|, N(jet), p_T(jet) (Jets are studied with abs(eta)<2.5)

*Unfolding performed by including response matrix in the likelihood

*Compared to predictions from POWHEG and NNLOPS

*Explored more fine bins of observables w.r.t earlier measurements on the differential observables.

Results: Differential cross section

*Differential cross section measured for $p_T(H)$, |y(H)|, N(jet), $p_T(jet)$

*Unfolding performed by including response matrix in the likelihood

*Compared to predictions from POWHEG and NNLOPS

*Explored more fine bins of observables w.r.t earlier measurements on the differential observables.

Outlook

- * Previous efforts / studies / measurements for differential cross section in HZZ4I decay channel:
 - Differential Fiducial Cross section measurement (Run I data) JHEP 04 (2016) 005
 - Inclusive Fiducial Cross section measurement (2015 data) CMS PAS HIG-15-004
 - Full set of properties measurement (2016 data) JHEP 11 (2017) 047
- * Ongoing work (In approval): CMS Cadiline: HIG-21-009
 - More differential observables considered; 1D and 2D adopting the same strategy w.r.t Eur. Phys. J. C 81 (2021) 488
 - Constraints on the effective Hbb and Hcc couplings (κb/κc)
 - Follow-up on dedicated Run 1 paper (HIG-14-028)
 - Constraint on the Higgs boson trilinear self-coupling ($\kappa\lambda$)
 - Being performed for the **first time** with single Higgs decay channel and at 138/fb
 - Earlier analyses: **HIG-19-005** (inclusive only), **FTR-18-020** (differential, but a projection studies instead of a measurement)
- * Staty tuned.

Η

R

* Higgs boson differential cross section measurements in four-lepton final state at $\sqrt{s} = 13 TeV$ are presented

• Using the CMS data corresponding to an integrated luminosity of 137 fb⁻¹

 Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are reported

* All results are consistent with the Standard Model predictions, within their uncertainties.

"Whoever travels a path in search of knowledge, Allah makes easy for him a path to Paradise " Prophet Muhammad (PBUH); Ref: Sahih Muslim 2699

Objects

>Selected electrons

- Loose electrons
 - $P_T > 7 \text{GeV}; |\eta| < 2.5$
 - $d_{xv} < 0.5 \ cm; d_z < 1 \ cm; SIP_{3D} < 3$
- BDT ID+Iso in 6 ($|\eta|$, P_T)bins
- Reduction of fakes for same signal efficiency when witch from TMVA(V1) to **xgboost**(V2) library for BDT training

>FSR photon

- $P_{T,\gamma} > 2 \text{ GeV; } |\eta^{\gamma}| < 2.4; \text{relPFIso} < 1.8$
- Electron SC veto by PF reference
- Associated γ to the closest loose lepton -

 $\Delta R(\gamma, l) < 0.5; \frac{\Delta R(\gamma, l)}{E_{T,\gamma}^2} < 0.012;$ choose photon with lowest $\Delta R(\gamma, l)$ E_T^2

Remove selected FSRs from lepton isolation cone for all loose leptons

>Selected muons

- Loose muons
 - $P_T > 5$ GeV; $|\eta| < 2.4$
 - $d_{xy} < 0.5 \ cm; d_z < 1 \ cm; SIP_{3D} < 3$
- PF μ ID and tracker high P_T ID
- RelPFIso($\Delta R = 0.3$) < 0.35

>JETS

- AK4 PFCHs jets
- $P_T > 30$ GeV; $\left| \eta \right| < 4.7$; Tight PF jet ID
- Cleaned $\Delta R(jet, l/\gamma) > 0.4$
- Tight PU Jet ID
- B-tagger:
 - DeepCSV medium WP
 - B-tagging SF applied

Distribution of m_{41} of Run-2 data

