The Multi-lepton Anomalies at the LHC and implications

Bruce Mellado

The Institute for Collider Particle Physics and iThemba LABS

UNIVERSITY OF THE WITWATERSRAND

al Research | Laboratory for Accelerator Foundation | Based Sciences

Higgs Potential 2022, 26/07/22

Outline

The simplified model

The multilepton anomalies Image: Methodology

- **The anatomy**
- Impact on Higgs physics
- **A possible candidate of S**

The Simplified Model and 2HDM+S

Eur. Phys. J. C (2016) 76:580 The simplified Model (from Run I)

- 1. The starting point of the hypothesis is the existence of a boson, H, that contains Higgs-like interactions, with a mass in the range 250-280 GeV
- 2. In order to avoid large quartic couplings, incorporate a mediator scalar, S, that interacts with the SM and Dark Matter.
- 3. Dominance of H→Sh,SS decay over other decays

The Decays of H

In the general case, H can have couplings as those displayed by a Higgs boson in addition to decays involving the intermediate scalar and Dark Matter

The 2HDM+S

Eur. Phys. J. C (2016) 76:580

Introduce singlet real scalar, S.

2HDM potential, $\mathscr{V}({m \Phi}_1,{m \Phi}_2)$ 2HDM+S potential

$$= m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right)$$

$$+ \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2}$$

$$+ \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left| \Phi_{1}^{\dagger} \Phi_{2} \right|^{2}$$

$$+ \frac{1}{2} \lambda_{5} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \text{h.c.} \right]$$

$$+ \left\{ \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\}$$

$$+ \mu_{3} \left[\Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right] S + \mu_{5} S^{3}.$$

Out of considerations of simplicity, assume S to be Higgs-like, which is not too far fetched. 6

It is paramount to remark that the excesses are seen in final states that were predicted 2015/2016 on the basis of a simplified model and not the result of scan of the available phase-space. Additionally, the parameters of the model where fixed then leaving only one degree of freedom: normalization Thus, no look-elsewhere effects in parameter or phase-space

Top associated Higgs production (Multi-lepton final states)

Reduced cross-section of ttH+tH is compensated by di-boson, (SS, Sh) decay and large Br(S→WW). Production of same sign leptons, three leptons is enhanced. Enhanced tH cross-section Produces SS 2I, 3I with b-jets, including 3 b-jets

Explains anomalously large ttW+tth+4t cross-sections seen by ATLAS and CMS

Methodology (to avoid biases and look-else-where effects)

S treated as SM Higgs-like, dominance of H→Sh,SS Fixed final states and phase-space defined by fixed model parameters. <u>NO tuning, NO scanning</u>

Update same final states with more data in Run 2

Study new final states where excesses predicted and data available in Run 1 and Run 2 (e.g., SS0b, 3l0b, ZW0b)

J.Phys. G46 (2019) no.11, 115001 JHEP 1910 (2019) 157 Chin.Phys.C 44 (2020) 6, 063103 Physics Letters B 811 (2020) 135964 Eur.Phys.J.C 81 (2021) 365 10

Combination of fit results (2019)

- Simultaneous fit for all measurements:
- To the right: (-2 log) profile likelihood ratio for each individual result and the combination of them all
- The significance for each fit is calculated as

 $\sqrt{-2\log\lambda(0)}$

- Best-fit: $\beta_g^2 = 2.92 \pm 0.35$
- Corresponds to 8.04σ

Excesses have been growing since, $\frac{1}{2}$ and new have emerged (Eur.Phys.J.C 81 (2021) 365)

Interpretation: Measure of the inability of current MC tools to describe multiple-lepton data and how a simplified model with $H \rightarrow Sh$ is able to capture the effect with one parameter

11

Anatomy of the multi-lepton anomalies

Final state	Characteristic	Dominant SM process	Significance
l+l- + jets, b-jets	m _{II} <100 GeV, dominated by 0b- jet and 1b-jet	tt+Wt	>5σ
l+l- + full-jet veto	m _{ii} <100 GeV	ww	~3σ
I±I± & I±I±I + b- jets	Moderate H_T	ttW, 4t	>3σ
l±l± & l±l±l et al., no b-jets	In association with h	Wh, (WWW)	4.2σ
Z(→I+I-)+I	р _{тz} <100 GeV	ZW	>3σ

Anomalies cannot be explained by mismodelling of a particular process, e.g. ttbar production alone.

Impact on Higgs Physics

The presence of a BSM signal of the type $H \rightarrow Sh$ would lead to:

- □ The presence of <u>extra leptons</u> in association with h. Affects the Wh measurement (Eur.Phys.J.C 81 (2021) 365)
- **Distortion of Higgs** p_T and rapidity (under study)

No tuning of model parameters performed. Look at fixed corners of the phase-space fixed with parameters of 2017.

Survey of LHC results on Vh (V=W,Z) production (Eur.Phys.J.C 81 (2021) 365)

The BSM (H \rightarrow Sh) signal appears at low p_{Th} and the SM signal is prevalent at larger p_{Th} (no tuning of parameters)

Include those results from ATLAS and CMS where no requirements on p_{Th} (or correlated observables) is not done or used in an MVA.

Those results where the final state is treated more "inclusively" display elevated signal strengths for Wh production:

 $\mu(Wh) = 2.41 \pm 0.37$

This represents a 3.8 σ deviation from the SM value of 1. BSM signal normalization less than expected from multilepton excesses assuming Br(H \rightarrow Sh)=100%. Indicates that Br(H \rightarrow SS) > Br(H \rightarrow Sh)

			-			-	-	
Higgs	Ref.	Experiment	\sqrt{s} , \mathcal{L}	Final	Category	μ	Used in	Comments
decay			TeV, fb ⁻¹	state		a a±2.0	combination	
WW - -					DFOS 2j	$2.2^{+1.0}_{-1.9}$	¥	
				2ℓ	SS 1j	8.4+4.3	~	2ℓ combination: $\mu = 3.7^{+1.9}_{-1.5}$
	66]	66] ATLAS	7, 4.5		SS 2j	$7.6^{\pm 0.0}_{-5.4}$	1	
			8, 20.3	3ℓ	1SFOS	$-2.9^{+2.7}_{-2.1}$	x	$m_{\ell_0 \ell_2}$ used as input
								BDT discriminating variable
					0SFOS	$1.7^{+1.9}_{-1.4}$	✓	
	67]	ATLAS	13, 36.1	3ℓ	1SFOS	$2.3\substack{+1.2 \\ -1.0}$	✓	1SFOS channel uses $m_{\ell_0\ell_2}$ in the
					0SFOS			BDT but excess driven by 0SFOS
	68	CMS	7, 4.9	2ℓ	DFOS 2j	$0.39^{+1.97}_{-1.87}$	✓	Discrepancy at low $m_{\ell\ell}$
			8, 19.4	3ℓ	0+1SFOS	$0.56^{+1.27}_{-0.95}$	✓	
	691	CMS	13 35 9	2ℓ	DFOS 2j	$3.92^{+1.32}_{-1.17}$	✓	Discrepancy at low $m_{\ell\ell}$
	0.01			3ℓ	0+1SFOS	$2.23^{+1.76}_{-1.53}$	✓	
	201	ATTAR	8, 20.3	1ℓ	$\ell + \tau_h \tau_h$	1.8 ± 3.1	1	
	10	ATLAS		2ℓ	$e^{\pm}\mu^{\pm} + \tau_{\rm h}$	1.3 ± 2.8	1	
	(mail	016	7, 4.9 8, 19.7	1ℓ	$\ell + \tau_h \tau_h$	-0.33 ± 1.02	x	BDT based on $p_{\mathrm{T}}^{\tau_1} + p_{\mathrm{T}}^{\tau_2}$
<i>TT</i> .	n_{1}	CMS		2ℓ	$e^{\pm}\mu^{\pm} + \tau_h$		x	Split $p_{\mathrm{T}}^{\ell_1} + p_{\mathrm{T}}^{\ell_2} + p_{\mathrm{T}}^{\tau}$ at 130 GeV
	Inol		13, 35.9	1ℓ	$\ell + \tau_h \tau_h$	$3.39^{+1.68}_{-1.54}$		
	72	CMS		2ℓ	$e^{\pm}\mu^{\pm} + \tau_h$		*	
		[73] ATLAS	7, 5.4 8, 20.3	lν	One-lepton			
	[73]			1.00	E_T^{miss}	1.0 ± 1.6	x	$E_{T}^{miss} > 70 - 100 \text{ GeV}$
	-			ii	Hadronic			$p_{T_h}^{\gamma\gamma} > 70 \text{ GeV}$
			7, 5.1 8, 19.7	lν	One-lepton			Split E_{T}^{miss} at 45 GeV
	[74] CMS	CMS		1.00	E_{T}^{miss}	$-0.16^{+1.16}_{-0.79}$	x	$E_T^{miss} > 70 \text{ GeV}$
	-			ii	Hadronic	-0.75		$p_{\gamma\gamma}^{\gamma\gamma} > 13m_{\gamma\gamma}/12$
			13, 139	lν	One-lepton	$2.41^{+0.71}_{-0.70}$	1	$p_{\pi}^{\ell+E_T^{miss}} < 150 \text{ GeV}$
יי	75					$2.64^{+1.16}$	x	$p_T^{\ell+E_T^{miss}} > 150 \text{ GeV}$
		ATLAS		tu wu	Emiss	-0.99	×	$F_{1}^{miss} > 75 \text{ GeV}$
				jj	Hadronic	$0.76^{+0.95}$	*	$60 \le m_{eff} \le 120 \text{ GeV}$
						3 16 ^{+1.84}	Ĵ	$m_{11} \in [0, 60] [120, 350] CeV$
				lν	One-lepton	3.0+1.5	x	Superseeded by full Run 2 result
	76 CMS	CMS	13, 35.6	he was	gemiss	0.0-1.3	~	F ^{miss} > 85 CeV
				11	Hadronic	5 1+2.5	Ĵ	$n^{2\gamma}/m_{\gamma}$ not used
	77 CMS		ι, 15 εν	One-lepton	1.31+1.42	· · ·	$p_T^V < 75 \text{ GeV}$	
		CMS	13, 137	44	Hadronic	0.89+0.89		$n^{\gamma\gamma}/m$ used in BDT
ZZ		78 ATLAS	13, 139	11	Tananatio	0.69_0.91	x	PT / may used in 1971
	[78]			$\ell\ell\ell\ell\ell + \ell\nu$	Lep-enriched 1.44 ^{+1.17} 0.93	x	Number of jets used in MVA	
			$\ell \ell \ell \ell \ell + q \bar{q}$	2 <i>j</i>	a	_	m _{jj} used in MVA	
	79	0.40	10 107 1	$\ell\ell\ell\ell\ell + \ell\nu$	Lep-low p_T^n	$3.21^{+2.45}_{-1.85}$	1	$p_T^{\alpha} < 150 \text{ GeV}$
		CMS	13, 137.1		Lep-high p_T^h	$0.00^{+1.57}_{-0.00}$	x	$p_T^a > 150 \text{ GeV}$
				$\ell\ell\ell\ell + q\bar{q}$	2j	$0.57^{+1.20}_{-0.57}$	x	$60 < m_{jj} < 120~{\rm GeV}$

New results from CMS in the measurement of Vh, h→WW add to the anomalies reported in Eur.Phys.J.C 81 (2021) 365

Deviation from the SM becomes stronger with p_{TV}<150 Gev

https://cds.cern.ch/record/2784454/files/HIG-19-014-pas.pdf

A possible candidate of S

Procedure (avoiding "cherry picking")

- □Setting a well-defined procedure is essential to the integrity of a search. Scanning nullifies significance
- **□** From the di-lepton anomalies: $m_h < m_s < 170$ GeV
 - It is critical that search be localized and motivated
- \Box Focus on $\gamma\gamma$ and $Z\gamma$ decays
- □As per the model that described the multi-lepton anomalies, we select final state according to diboson signatures. S is produced via the decay of something heavier and not directly
 - **Re-use Higgs boson data**
 - **Remove VBF and boosted topologies**
 - Related to direct production

From Run 1 multi-lepton excesses model-dependent prediction of $m_s = 150 \pm 5$ GeV

Analysis of publicly available di-photon and $Z\gamma$ spectra in associated production gives global 4.8σ excess around 151 GeV. Fiducial yields consistent with $H \rightarrow SS^*$ hypothesis with m_H=270 GeV (see above)

Excess not seen in $S \rightarrow ZZ \rightarrow 4\ell, \ell = e, \mu$

Result is obtained with public results from the LHC experiments. Using a simplified model and two degrees of freedom global significance drops to $\sim 4\sigma$ (under review).

CMS Physics Analysis Summary

https://cds.cern.ch/record/2803738/files/HIG-20-013-pas.pdf

Contact: cms-pag-conveners-higgs@cern.ch

2022/03/11

Recent results with II+MET not included above

Measurements of properties of the Higgs boson in the W boson pair decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

S.Bhattacharya

Contribution from a 2HDM+S signal is given by the dark blue histograms in the bottom two plots.

The BSM signal normalization of compatible for the two bins in p_{TI2}.

Signal extraction in the 1j bin and combination with other excesses in progress.

24

Data favors an admixture of a signal with m_S =150 GeV

Abovementioned excess further motivates searches for bosons in asymmetric $\gamma\gamma$ bb configurations not performed before at the LHC

Events / 10 GeV

 $M_{\gamma\gamma bb}$ [GeV]

Some tantalizing results around 96 GeV from LEP and CMS, not contradicted by ATLAS. Interesting to see what the full Run 2 data set has to say. Further motivates asymmetric searches $H\rightarrow$ SS'...

LEP, Phys. Lett. B 565 (2003) 61–75

CMS, Phys. Lett. B 793 (2019) 320–347

Published in EPJC

Unveiling Hidden Physics at the LHC

Oliver Fischer^{†,1}, Bruce Mellado^{†,2,3}, Stefan Antusch⁴, Emanuele Bagnaschi⁵, Shankha Banerjee⁶, Geoff Beck², Benedetta Belfatto^{7,8}, Matthew Bellis⁹, Zurab Berezhiani^{10,11}, Monika Blanke^{12,13}, Bernat Capdevila^{14,15}, Kingman Cheung¹⁶, Andreas Crivellin^{5,6,17}, Nishita Desai¹⁸, Bhupal Dev¹⁹, Rohini Godbole²⁰, Tao Han²¹, Philip Harris^{22, 23}, Martin Hoferichter²⁴, Matthew Kirk^{25,26}, Suchita Kulkarni²⁷, Clemens Lange²⁸, Kati Lassila-Perini²⁹, Zhen Liu³⁰, Farvah Mahmoudi^{6,31}, Claudio Andrea Manzari^{5,17}, David Marzocca³², Biswarup Mukhopadhyaya³³, Antonio Pich³⁴, Xifeng Ruan², Luc Schnell^{35, 36}, Jesse Thaler^{22, 23}, and Susanne Westhoff³⁷

¹Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK ²School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa.

³iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa. ⁴Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland ⁵Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁶CERN Theory Division, CH-1211 Geneva 23, Switzerland

⁷Dipartimendto di Fisica "E. Fermi", Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa,

Italy

⁸INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
⁹Siena College, 515 Loudon Road, Loudonville, NY 12211-1462, United States
¹⁰Dipartimendto di Fisica e Chimica, Università di L'Aquila, 67100 Coppito, L'Aquila, Italy
¹¹INFN, Laboratori Nazionali del Gran Sasso, 67100 Assergi, L'Aquila, Italy
¹²Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
¹³Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology, Engesserstrasse 7, D-76128 Karlsruhe, Germany

Outlook and Conclusions

□ Discrepancies in multi-lepton final states at LHC w.r.t. current MCs are not statistical fluctuations

- **They appear in corners of the phase-space dominated by different processes** (wt/tt/4t, vv, ttv, vh, www)
 - •Hard to explain with MC mismodelling

□ Discrepancies interpreted with simplified model where $H \rightarrow SS$, Sh is treated as SM Higgs-like and one parameter is floated

□Features of the Higgs data from LHC agree with predictions the simplified model used here

Content Analysis of $\gamma \gamma / Z \gamma$ spectra in associated production gives a large global excess around 151 GeV

□ Motivates $H \rightarrow SS^*$, $Sh \rightarrow \gamma\gamma bb$ searches, where asymmetric configurations play an important role