Higher-form symmetries of QFT from string theory

Yi-Nan Wang

Peking University

IHEP-CAS Apr. 6th, 2022

< 同 > < 三 > < 三 >

3

Introduction to higher-form symmetry

- What's higher-form symmetry
- Examples of higher-form symmetry
- Pigher-form symmetry of QFTs from string theory
 - Idea of geometric engineering
 - $\bullet~1\text{-}\mathsf{form}$ symmetry of 5d $\mathcal{N}=1~\mathsf{SCFTs}$
 - 1-form symmetry in 4d $\mathcal{N}=2$ SCFTs and 5d/4d correspondence

3 Conclusions

・ 回 ト ・ ヨ ト ・ ヨ ト

Introduction to higher-form symmetry

イロト イボト イヨト イヨト

æ

Symmetries

- Symmetry is a central concept in physics
- (1) Global symmetry: transformation parameter ϵ is independent of x^{μ}
- (2) Local symmetry: $\epsilon(x^{\mu})$ is space-time dependent

< ロ > < 同 > < 三 > < 三 >

Symmetries

- Symmetry is a central concept in physics
- (1) Global symmetry: transformation parameter ϵ is independent of x^{μ}
- (2) Local symmetry: $\epsilon(x^{\mu})$ is space-time dependent
- Examples of global symmetry:
 - Continuous space-time symmetry, e. g. Poincaré symmetry, conformal symmetry, global SUSY, ...
 - Oiscrete symmetry, e. g. C, P, T,...
 - Solution Continuous internal symmetry, e. g. flavor symmetry, $U(1)_B$, $U(1)_L$
 - Iigher-form symmetry, categorical symmetry

イロト イポト イラト イラト

-

What's higher-form symmetry Examples of higher-form symmetry

Ordinary 0-form global symmetry

• In this talk I will focus on QFTs in *d*-dimensional flat space-time.

・ 同 ト ・ ヨ ト ・ ヨ ト

Ordinary 0-form global symmetry

- In this talk I will focus on QFTs in *d*-dimensional flat space-time.
- First review the 0-form global symmetry group *G* acting on local operators (0d particles).
- Noether's theorem: continuous 0-form symmetry gives rise to a conserved charge.

くぼす くほう くほう

Ordinary 0-form global symmetry

- In this talk I will focus on QFTs in *d*-dimensional flat space-time.
- First review the 0-form global symmetry group *G* acting on local operators (0d particles).
- Noether's theorem: continuous 0-form symmetry gives rise to a conserved charge.
- In differential form language,

$$Q(M^{(d-1)}) = \oint_{M^{(d-1)}} j.$$
 (1)

• e. g. in EM, the (d-1)-form converved current j is given by the Maxwell's equation as

$$d * F = j. \tag{2}$$

イロト イポト イラト イラト

What's higher-form symmetry Examples of higher-form symmetry

Ordinary 0-form global symmetry

• Introduce the topological operator $U(g, M^{(d-1)})$ generating the 0-form symmetry, which corresponds to $g \in G$,

$$U(g, M^{(d-1)}) = g^{\oint_{M^{(d-1)}j}}, \qquad (3)$$

satisfying

$$U(g_1, M^{(d-1)})U(g_2, M^{(d-1)}) = U(g_1g_2, M^{(d-1)}).$$
(4)

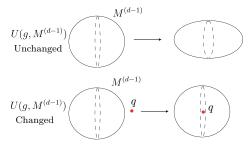
• Acts on a 0-dim. local operator at a particular time slice in \mathbb{R}^d .

- 4 周 ト 4 戸 ト 4 戸 ト

What's higher-form symmetry Examples of higher-form symmetry

0-form symmetry

• The operator $U(g, M^{(d-1)})$ is unchanged by a small deformation of $M^{(d-1)}$, but changes when $M^{(d-1)}$ crossed through a charged particle (operator):



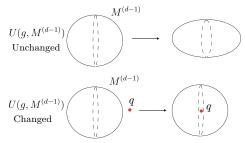
A 10

A 34 b

What's higher-form symmetry Examples of higher-form symmetry

0-form symmetry

• The operator $U(g, M^{(d-1)})$ is unchanged by a small deformation of $M^{(d-1)}$, but changes when $M^{(d-1)}$ crossed through a charged particle (operator):



• For example, for an $M^{(d-1)}$ surrounding a point \mathcal{P} , and a local operator $V_i(\mathcal{P})$ charged under G, we have

$$U(g, M^{(d-1)})V_i(\mathcal{P}) = R_i^j(g)V_j(\mathcal{P}).$$
⁽⁵⁾

7/42

Higher-form symmetry

- Extend the story to a p-form (p > 0) symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14')
- A *p*-form symmetry is generated by a (d p 1)-dimensional topological operator $U(g, M^{(d-p-1)})$:

$$U(g_1, M^{(d-p-1)})U(g_2, M^{(d-p-1)}) = U(g_1g_2, M^{(d-p-1)}).$$
(6)

and acts on *p*-dimensional object(operator) $V_i(\mathcal{C}^{(p)})$.

イロト イポト イヨト イヨト

Higher-form symmetry

- Extend the story to a p-form (p > 0) symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14')
- A *p*-form symmetry is generated by a (d p 1)-dimensional topological operator $U(g, M^{(d-p-1)})$:

$$U(g_1, M^{(d-p-1)})U(g_2, M^{(d-p-1)}) = U(g_1g_2, M^{(d-p-1)}).$$
(6)

and acts on *p*-dimensional object(operator) $V_i(\mathcal{C}^{(p)})$.

• $U(g, M^{(d-p-1)})$ has non-trivial action on $V_i(\mathcal{C}^{(p)})$ when $M^{(d-p-1)}$ and $\mathcal{C}^{(p)}$ are non-trivially linked.

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory

• 4d pure U(1) gauge theory, with action

$$S = \frac{1}{2g^2} \int F \wedge *F , F = dA, \qquad (7)$$

there is a $U(1)_e \times U(1)_m$ 1-form symmetry.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory

• 4d pure U(1) gauge theory, with action

$$S = \frac{1}{2g^2} \int F \wedge *F , F = dA, \qquad (7)$$

there is a $U(1)_e \times U(1)_m$ 1-form symmetry. (1) The electric 1-form symmetry $\Gamma_e^{(1)} = U(1)_e$ corresponds to the invariance under the shift

$$A \to A + \lambda$$
, (8)

 λ is a flat connection ($d\lambda = 0$).

くぼす くほう くほう

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory

• 4d pure U(1) gauge theory, with action

$$S = \frac{1}{2g^2} \int F \wedge *F , F = dA, \qquad (7)$$

there is a $U(1)_e \times U(1)_m$ 1-form symmetry. (1) The electric 1-form symmetry $\Gamma_e^{(1)} = U(1)_e$ corresponds to the invariance under the shift

$$A \to A + \lambda$$
, (8)

- λ is a flat connection ($d\lambda = 0$).
- $U(1)_e$ is generated by the 2-form current

$$j_e = \frac{2}{g^2} * F \,. \tag{9}$$

Closed by e.o.m. d * F = 0.

・ 回 ト ・ ヨ ト ・ ヨ ト

U(1) gauge theory

• The generator of the electric 1-form symmetry:

$$U_e(e^{i\alpha}, M^{(2)}) = \exp\left(i\frac{2\alpha}{g^2}\int_{M^{(2)}} *F\right)$$
(10)

here $\int_{M^{(2)}} *F$ is the electric flux through the surface $M^{(2)}$.

• The charged object under $U(1)_e$ is the Wilson loop operator

$$W_n(\mathcal{C}) = \exp(in \oint_{\mathcal{C}} A) \tag{11}$$

マヨン イラン イラン

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory

(2) The magnetic 1-form symmetry $\Gamma_m^{(1)} = U(1)_m$ shifts the dual photon

$$\tilde{A} \to \tilde{A} + \tilde{\lambda} , \ d\tilde{A} = *dA$$
 (12)

 $U(1)_m$ is generated by the 2-form current

$$j_m = \frac{1}{2\pi} F.$$
 (13)

Closed by Jacobi identity dF = 0.

・ 回 ト ・ ヨ ト ・ ヨ ト

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory

(2) The magnetic 1-form symmetry $\Gamma_m^{(1)} = U(1)_m$ shifts the dual photon

$$\tilde{A} \to \tilde{A} + \tilde{\lambda} , \ d\tilde{A} = *dA$$
 (12)

 $U(1)_m$ is generated by the 2-form current

$$j_m = \frac{1}{2\pi} F.$$
 (13)

Closed by Jacobi identity dF = 0.

$$U_m(e^{i\eta}, M^{(2)}) = \exp\left(i\frac{\eta}{2\pi}\int_{M^{(2)}}F\right)$$
(14)

here $\int_{M^{(2)}} F$ is the magnetic flux through the surface $M^{(2)}$.

• The charged object under $U(1)_m$ is the 't Hooft loop operator

$$T_n(\mathcal{C}) = \exp(in \oint_C \tilde{A})$$
(15)

マヨン イラン イラン

11/42

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory with matter

• Introduce charged matter fields ϕ_i with charge $q_i \in \mathbb{Z}$, which are all multiples of N.

< ロ > < 同 > < 三 > < 三 >

U(1) gauge theory with matter

- Introduce charged matter fields ϕ_i with charge $q_i \in \mathbb{Z}$, which are all multiples of N.
- Consider the old $U(1)_e$ generator

$$U_e(e^{i\alpha}, M^{(2)}) = \exp\left(i\frac{2\alpha}{g^2}\int_{M^{(2)}} *F\right), \qquad (16)$$

 $\frac{2}{g^2} * F$ is no longer closed since the new e.o.m. is

 $d * F = j_{el} \leftarrow \text{electric current from matter fields}.$ (17)

U(1) gauge theory with matter

- Introduce charged matter fields ϕ_i with charge $q_i \in \mathbb{Z}$, which are all multiples of N.
- Consider the old $U(1)_e$ generator

$$U_e(e^{i\alpha}, M^{(2)}) = \exp\left(i\frac{2\alpha}{g^2}\int_{M^{(2)}} *F\right), \qquad (16)$$

 $\frac{2}{g^2} * F$ is no longer closed since the new e.o.m. is $d * F = j_{el} \leftarrow \text{electric current from matter fields}.$ (17)

• The correct electric 1-form symmetry generators are

$$U_e(e^{i\alpha}, M^{(2)}), \ \alpha = \frac{2\pi}{N}.$$
 (18)

• Hence $U(1)_e$ is broken to \mathbb{Z}_N !

・ 回 ト ・ ヨ ト ・ ヨ ト

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory with matter

• Equivalently, denote the generator of $\mathfrak{u}(1)$ gauge symmetry algebra by Q, which acts on each matter field with

$$Q \cdot C_i = q_i \,. \tag{19}$$

• In the language of Lie algebra, $Q \in$ root lattice, $C_i \in$ weight lattice.

マロト イラト イラト

U(1) gauge theory with matter

• Equivalently, denote the generator of $\mathfrak{u}(1)$ gauge symmetry algebra by Q, which acts on each matter field with

$$Q \cdot C_i = q_i \,. \tag{19}$$

• In the language of Lie algebra, $Q \in$ root lattice, $C_i \in$ weight lattice.

• Now one try to find a multiple aQ, $a \in \mathbb{Q}$, where all the matter fields have integral charge under it:

$$aQ \cdot C_i \in \mathbb{Z} \tag{20}$$

When $gcd(q_i) = N$, this $aQ = Q/N \pmod{Q}$, which generates the \mathbb{Z}_N 1-form symmetry.

イロト イポト イラト イラト

U(1) gauge theory with matter

• Equivalently, denote the generator of $\mathfrak{u}(1)$ gauge symmetry algebra by Q, which acts on each matter field with

$$Q \cdot C_i = q_i \,. \tag{19}$$

• In the language of Lie algebra, $Q \in$ root lattice, $C_i \in$ weight lattice.

• Now one try to find a multiple aQ, $a \in \mathbb{Q}$, where all the matter fields have integral charge under it:

$$aQ \cdot C_i \in \mathbb{Z} \tag{20}$$

When $gcd(q_i) = N$, this $aQ = Q/N \pmod{Q}$, which generates the \mathbb{Z}_N 1-form symmetry.

• In other words, the generator of the 1-form symmetry is an element of the lattice $\Lambda_{\rm coweight}/\Lambda_{\rm coroot}.$

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory with matter

• Extend the story to $G = U(1)^r$ gauge group with a number of matter fields ϕ_i with charge

$$q_{i,j} = C_i \cdot Q_j$$
 $(i = 1, ..., m) (j = 1, ..., r)$ (21)

under the *j*-th U(1).

- 4 同 ト 4 三 ト 4 三 ト

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory with matter

• Extend the story to $G = U(1)^r$ gauge group with a number of matter fields ϕ_i with charge

$$q_{i,j} = C_i \cdot Q_j$$
 $(i = 1, ..., m) (j = 1, ..., r)$ (21)

under the *j*-th U(1).

• To compute the electric 1-form symmetry, one need to write down linear combinations $Q^{(k)} = \sum_j b_{kj} Q_j$, such that all the matter fields have integral charges under $Q^{(k)}$:

$$C_i \cdot Q^{(k)} \in \mathbb{Z} \quad (\forall C_i).$$
 (22)

ヘロト ヘ戸ト ヘヨト ヘヨト

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory with matter

• Solution in linear algebra - Smith Decomposition: take the $(m \times r)$ -charge matrix q,

$$q = UDV, \qquad (23)$$

D is a $(m \times r)$ -matrix with the form

$$D = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \alpha_r \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

(24)

A 34 b

 $(\alpha_i \in \mathbb{Z})$, called the Smith normal form of q. U is a $m \times m$ matrix and V is a $r \times r$ matrix.

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory with matter

• Read off each column of V, the linear combination

$$Q^{(i)} = \frac{1}{\alpha_i} \cdot \sum_j V_{j,k} Q_j \in \Lambda_{\text{coweight}} / \Lambda_{\text{coroot}}$$
(25)

are the generators of the 1-form symmetry,

$$\Gamma_{e}^{(1)} = \bigoplus_{i} (\mathbb{Z}/\alpha_{i}\mathbb{Z})$$
(26)

くぼう くほう くほう

What's higher-form symmetry Examples of higher-form symmetry

U(1) gauge theory with matter

• Read off each column of V, the linear combination

$$Q^{(i)} = \frac{1}{\alpha_i} \cdot \sum_j V_{j,k} Q_j \in \Lambda_{\text{coweight}} / \Lambda_{\text{coroot}}$$
(25)

are the generators of the 1-form symmetry,

$$\Gamma_e^{(1)} = \bigoplus_i (\mathbb{Z}/\alpha_i \mathbb{Z})$$
(26)

• Examples: suppose we have $G = U(1)^2$ and matter fields with charges

$$q_1 = (2, -1), \ q_2 = (-1, 2)$$
 (27)

$$q = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
(28)

From the form of D, we can read off $\Gamma_e^{(1)} = \mathbb{Z}_3$, and the generator is

$$Q_{\mathbb{Z}_3} = \frac{1}{3}(-Q_1 + Q_2) \tag{29}$$

Yi-Nan Wang

16/42

What's higher-form symmetry Examples of higher-form symmetry

non-abelian gauge theory

- (1) 4d pure SU(N) gauge theory
- SU(N) has a \mathbb{Z}_N center
- Electric 1-form symmetry $\Gamma_e^{(1)} = \mathbb{Z}_N$ acting on the Wilson loop operator
- \rightarrow confining string
- Confined phase!

・ 回 ト ・ ヨ ト ・ ヨ ト

non-abelian gauge theory

- (1) 4d pure SU(N) gauge theory
- SU(N) has a \mathbb{Z}_N center
- Electric 1-form symmetry $\Gamma_e^{(1)} = \mathbb{Z}_N$ acting on the Wilson loop operator
- \rightarrow confining string
- Confined phase!
- (2) 4d pure PSU(N) gauge theory
- The center is trivial, but $\pi_1(PSU(N)) = \mathbb{Z}_N$
- Magnetic 1-form symmetry $\Gamma_m^{(1)} = \mathbb{Z}_N$, deconfined phase.

・ 回 ト ・ ヨ ト ・ ヨ ト

non-abelian gauge theory

- (1) 4d pure SU(N) gauge theory
- SU(N) has a \mathbb{Z}_N center
- Electric 1-form symmetry $\Gamma_e^{(1)} = \mathbb{Z}_N$ acting on the Wilson loop operator
- \rightarrow confining string
- Confined phase!
- (2) 4d pure PSU(N) gauge theory
- The center is trivial, but $\pi_1(PSU(N)) = \mathbb{Z}_N$
- Magnetic 1-form symmetry $\Gamma_m^{(1)} = \mathbb{Z}_N$, deconfined phase.
- In a particular gauge theory with $\mathfrak{g} = \mathfrak{su}(N)$, the \mathbb{Z}_N Wilson loop and 't Hooft loop cannot coexist \rightarrow choice of polarization.
- This choice is not manifest in the action

$$S = \int \frac{1}{2g^2} tr(F \wedge *F) \,. \tag{30}$$

マロト イラト イラト

What's higher-form symmetry Examples of higher-form symmetry

non-abelian gauge theory

- One can compute the 1-form symmetry using the U(1) techniques after $SU(N) \rightarrow U(1)^{N-1}$ (Coulomb branch).
- \bullet Add matter fields in fundamental rep. of $SU(N) \to$ breaks \mathbb{Z}_N 1-form symmetry
- Adj. matter does not break the \mathbb{Z}_N 1-form symmetry.

イロト イポト イラト イラト

What's higher-form symmetry Examples of higher-form symmetry

Physical significance

• The Lagrangian definition of QFT is not complete! The same Lagrangian leads to different sets of extended operators, classified by higher symmetry.

< ロ > < 同 > < 三 > < 三 >

What's higher-form symmetry Examples of higher-form symmetry

Physical significance

- The Lagrangian definition of QFT is not complete! The same Lagrangian leads to different sets of extended operators, classified by higher symmetry.
- \bullet Higher-form symmetry \leftrightarrow confinement

Physical significance

- The Lagrangian definition of QFT is not complete! The same Lagrangian leads to different sets of extended operators, classified by higher symmetry.
- \bullet Higher-form symmetry \leftrightarrow confinement
- Swampland conjectures: a quantum gravity theory has no global symmetry, extends to the case of higher-form symmetries.

ヘロト ヘ戸ト ヘヨト ヘヨト

Physical significance

- The Lagrangian definition of QFT is not complete! The same Lagrangian leads to different sets of extended operators, classified by higher symmetry.
- $\bullet \ {\sf Higher}{-} {\sf form \ symmetry} \leftrightarrow {\sf confinement}$
- Swampland conjectures: a quantum gravity theory has no global symmetry, extends to the case of higher-form symmetries.
- Help us to characterize and understand non-Lagrangian QFTs (next parts)

Introduction to higher-form symmetry	Idea of geometric engineering
Higher-form symmetry of QFTs from string theory	1-form symmetry of 5d ${\cal N}=1$ SCFTs
Conclusions	1-form symmetry in 4d $\mathcal{N}=$ 2 SCFTs and 5d/4d correspondence

Higher-form symmetry of QFTs from string theory

э

< 回 > < 三 > < 三 >

ldea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence.

Idea of geometric engineering

- Putting high-dimensional superstring/M/F-theory on geometric spaces
- \rightarrow lower dimensional gravity/QFT.

マロト イラト イラト

ldea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence.

Idea of geometric engineering

- Putting high-dimensional superstring/M/F-theory on geometric spaces
- \rightarrow lower dimensional gravity/QFT.
- String theory basics:

. . .

- (1) Superstring in 10d; M-theory in 11d
- (2) Extended objects: fundamental string, D-branes; M2-brane, M5-brane

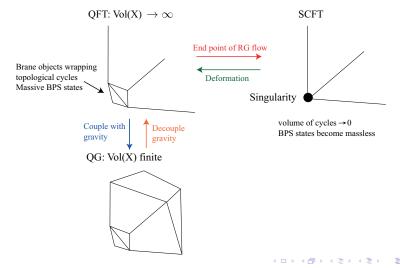
(3) Supersymmetry: extension of Poincaré algebra by fermionic operators (supercharges), into super-Poincaré algebra

(4) They are UV complete descriptions of quantum gravity

ldea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence

Idea of geometric engineering

• We consider a product space $\mathbb{R}^{d-1,1} imes X$



Idea of geometric engineering

- In this talk, X is a non-compact Calabi-Yau threefold with SU(3) holonomy
- Number of supercharges: 32 ightarrow 8, 4d $\mathcal{N}=$ 2, 5d $\mathcal{N}=$ 1 or 6d (1,0)
- If X has a singularity at origin \rightarrow SCFT, often non-Lagrangian

Idea of geometric engineering

- In this talk, X is a non-compact Calabi-Yau threefold with SU(3) holonomy
- Number of supercharges: 32 ightarrow 8, 4d \mathcal{N} = 2, 5d \mathcal{N} = 1 or 6d (1,0)
- If X has a singularity at origin \rightarrow SCFT, often non-Lagrangian (1) 1-form symmetry of 5d $\mathcal{N} = 1$ SCFTs

(Morrison, Schafer-Nameki, Willett 19')(Albertini, Del Zotto, Exterbarria, Hosseini 20')(Bhardwaj, Schafer-Nameki 20')(Tian, YNW 21')...

ldea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence

Idea of geometric engineering

- In this talk, X is a non-compact Calabi-Yau threefold with SU(3) holonomy
- Number of supercharges: 32 \rightarrow 8, 4d \mathcal{N} = 2, 5d \mathcal{N} = 1 or 6d (1,0)
- If X has a singularity at origin \rightarrow SCFT, often non-Lagrangian (1) 1-form symmetry of 5d $\mathcal{N} = 1$ SCFTs

(Morrison, Schafer-Nameki, Willett 19')(Albertini, Del Zotto, Exterbarria, Hosseini 20')(Bhardwaj, Schafer-Nameki 20')(Tian, YNW 21')...

(2) 1-form symmetry in 4d $\mathcal{N}=2$ SCFTs and 5d/4d correspondence

(Closset, Schafer-Nameki, YNW 20')(Closset, Giacomelli, Schafer-Nameki, YNW 20')(Closset, Schafer-Nameki, YNW 21')

ldea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence

Idea of geometric engineering

- In this talk, X is a non-compact Calabi-Yau threefold with SU(3) holonomy
- Number of supercharges: 32 ightarrow 8, 4d $\mathcal{N}=$ 2, 5d $\mathcal{N}=$ 1 or 6d (1,0)
- If X has a singularity at origin \rightarrow SCFT, often non-Lagrangian (1) 1-form symmetry of 5d $\mathcal{N} = 1$ SCFTs

(Morrison, Schafer-Nameki, Willett 19')(Albertini, Del Zotto, Exterbarria, Hosseini 20')(Bhardwaj, Schafer-Nameki 20')(Tian, YNW 21')...

(2) 1-form symmetry in 4d $\mathcal{N}=2$ SCFTs and 5d/4d correspondence

(Closset, Schafer-Nameki, YNW 20')(Closset, Giacomelli, Schafer-Nameki, YNW

20')(Closset, Schafer-Nameki, YNW 21')

(3) Higher-form symmetry of 6d (1,0) SCFTs

(Bhardwaj, Schafer-Nameki 20')(Apruzzi, Dierigl, Ling, 21')(Hubner, Morrison, Schafer-Nameki, YNW 22')...

イロト イポト イヨト イヨト

-

ldea of geometric engineering **1-form symmetry of 5d** \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

Basics of 5d (SUSY) gauge theories

$$S = \int d^5 x \left[\frac{1}{g_{\rm YM}^2} \text{Tr}(F^{\mu\nu} F_{\mu\nu}) + i \bar{\psi} \not{D} \psi + \dots \right]$$
(31)

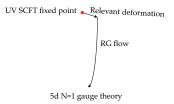
• Action is non-renormalizable, always strongly coupled in the UV

< ロ > < 同 > < 三 > < 三 >

Basics of 5d (SUSY) gauge theories

$$S = \int d^5 x \left[\frac{1}{g_{\rm YM}^2} \text{Tr}(F^{\mu\nu} F_{\mu\nu}) + i\bar{\psi} \not\!\!D \psi + \dots \right]$$
(31)

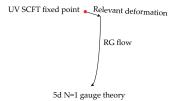
- Action is non-renormalizable, always strongly coupled in the UV
- For some 5d $\mathcal{N} = 1$ supersymmetric gauge theories, it can be UV completed to a strongly coupled superconformal field theory when $g_{\rm YM} \to \infty$ (Seiberg 96')(Intriligator, Morrison, Seiberg 96').



Basics of 5d (SUSY) gauge theories

$$S = \int d^5 x \left[\frac{1}{g_{\rm YM}^2} \text{Tr}(F^{\mu\nu} F_{\mu\nu}) + i\bar{\psi} \not\!\!D \psi + \dots \right]$$
(31)

- Action is non-renormalizable, always strongly coupled in the UV
- For some 5d $\mathcal{N} = 1$ supersymmetric gauge theories, it can be UV completed to a strongly coupled superconformal field theory when $g_{\rm YM} \rightarrow \infty$ (Seiberg 96')(Intriligator, Morrison, Seiberg 96').

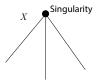


• UV completion of $\mathfrak{su}(2) + NF$: Seiberg $E_{N+1}(N \le 7)$ theories with $\mathfrak{g}_F = \mathfrak{e}_{N+1}$ (Seiberg 96')

ldea of geometric engineering **1-form symmetry of 5d** \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

Geometric construction of 5d SCFTs

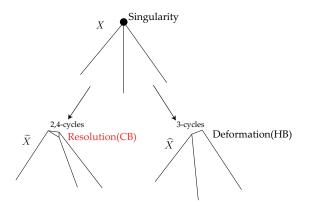
- 11d M-theory on canonical threefold singularity (Xie, Yau 17')
- Classification of canonical threefold singularities $X \to$ partial classification of 5d $\mathcal{N}=1$ SCFT $\mathcal{T}^{\rm 5d}_{\bf X}!$



・ 回 ト ・ ヨ ト ・ ヨ ト

Geometric construction of 5d SCFTs

• Singularity X and the 5d SCFTs are hard to study, one considers instead the desingularization of X:



• Resolution \leftrightarrow Coulomb branch of $\mathcal{T}^{\mathrm{5d}}_{\mathbf{X}}$, $SU(N) \rightarrow U(1)^{N-1}!$

Idea of geometric engineering 1-form symmetry of 5d $\mathcal{N} = 1$ SCFTs 1-form symmetry in 4d $\mathcal{N} = 2$ SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

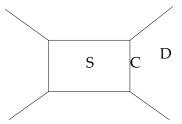
• Fundamental objects: M2, M5 branes, coupled to C_3 gauge field.

< ロ > < 同 > < 三 > < 三 >

ldea of geometric engineering **1-form symmetry of 5d** \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

- Fundamental objects: M2, M5 branes, coupled to C_3 gauge field.
- M-theory on the resolved space \widetilde{X} , with new cycles:
- (1) compact 4-cycles (complex surfaces) S_j $(j = 1, \ldots, r)$
- (2) non-compact 4-cycles D_{lpha} $(lpha=1,\ldots,f)$
- (3) compact 2-cycles (complex curves) C_i



4 3 5 4 3 5 5

Idea of geometric engineering **1-form symmetry of 5d** \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

(1) Compact 4-cycles S_j

$$C_3 = \sum_{j=1}^r A_i \wedge \omega_j \quad \leftarrow \text{Poincaré dual to } S_j \text{ in } \widetilde{X}$$
(32)

• # of S_j : CB rank r

< ロ > < 同 > < 三 > < 三 >

Idea of geometric engineering 1-form symmetry of 5d \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

(1) Compact 4-cycles S_j

$$C_3 = \sum_{j=1}^r A_i \wedge \omega_j \quad \leftarrow \text{Poincaré dual to } S_j \text{ in } \widetilde{X}$$
(32)

• # of S_j : CB rank r

(2) Non-compact 4-cycles D_{α}

• Generates Cartan subalgebra of the flavor symmetry G_F

•
$$\#$$
 of $D_{\alpha} = f$

くぼう くほう くほう

Idea of geometric engineering 1-form symmetry of 5d \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

(1) Compact 4-cycles S_j

$$C_3 = \sum_{j=1}^r A_i \wedge \omega_j \quad \leftarrow \text{Poincaré dual to } S_j \text{ in } \widetilde{X}$$
(32)

- # of S_j : CB rank r
- (2) Non-compact 4-cycles D_{α}
- Generates Cartan subalgebra of the flavor symmetry G_F
- # of $D_{\alpha} = f$
- (3) Compact 2-cycles C_i
- M2-brane wrapping compact 2-cycles C_i : Charged particle with charge $q_{i,j} = C_i \cdot S_j$ under $U(1)_j$ gauge group.

ldea of geometric engineering **1-form symmetry of 5d** \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

- From the charge matrix $q_{i,j}$, compute the electric 1-form symmetry $\Gamma_e^{(1)}$ on the CB from Smith decomposition! (Morrison, Schafer-Nameki, Willett 19')
- Technically, the resolution of X is difficult to compute in many cases.

・ 回 ト ・ ヨ ト ・ ヨ ト

ldea of geometric engineering **1-form symmetry of 5d** \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

- From the charge matrix $q_{i,j}$, compute the electric 1-form symmetry $\Gamma_e^{(1)}$ on the CB from Smith decomposition! (Morrison, Schafer-Nameki, Willett 19')
- Technically, the resolution of X is difficult to compute in many cases.
- Application to 5d orbifold SCFTs, constructed as M-theory on $X = \mathbb{C}^3/\Gamma$, $\Gamma \subset SU(3)$ is a finite group. (Tian, YNW 21')(Acharya, Lambert, Najjar, Tian, Svanes 21')

- 4 周 ト 4 戸 ト 4 戸 ト

ldea of geometric engineering **1-form symmetry of 5d** \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence.

1-form symmetry from CB

- From the charge matrix $q_{i,j}$, compute the electric 1-form symmetry $\Gamma_e^{(1)}$ on the CB from Smith decomposition! (Morrison, Schafer-Nameki, Willett 19')
- Technically, the resolution of X is difficult to compute in many cases.
- Application to 5d orbifold SCFTs, constructed as M-theory on $X = \mathbb{C}^3/\Gamma$, $\Gamma \subset SU(3)$ is a finite group. (Tian, YNW 21')(Acharya, Lambert, Najjar, Tian, Svanes 21')
- (2) Irreps ρ_i of $\Gamma \leftrightarrow$ vector bundles on X.

ヘロト ヘヨト ヘヨト

1-form symmetry from CB

• Applying a version of 3d McKay correspondence (Ito, Nakajima 00'), proved in (Bridgeland, King, Reid 01') Take the McKay quiver defined by (π is the natural 3-dim. rep. of Γ)

$$\rho_i \otimes \pi = \bigoplus_j a_{ji} \rho_j \,, \tag{33}$$

define the antisymmetric adjacency matrix $A(\Gamma) = \{A_{ij}\}$ by

$$A_{ij} = a_{ji} - a_{ij} , \qquad (34)$$

マヨン イラン イラン

1-form symmetry from CB

• Applying a version of 3d McKay correspondence (Ito, Nakajima 00'), proved in (Bridgeland, King, Reid 01') Take the McKay quiver defined by (π is the natural 3-dim. rep. of Γ)

$$\rho_i \otimes \pi = \bigoplus_i a_{ji} \rho_j \,, \tag{33}$$

define the antisymmetric adjacency matrix $A(\Gamma) = \{A_{ij}\}$ by

$$A_{ij} = a_{ji} - a_{ij} , \qquad (34)$$

then $A(\Gamma)$ has the same Smith normal form as the larger intersection matrix $M(\Gamma)$:

$$M(\Gamma) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & (q^{T}) \\ \hline 0 & q & 0 \end{pmatrix},$$
(35)

• From q-matrix, one can compute the 1-form symmetry $\Gamma_{e_1}^{(1)}$

Idea of geometric engineering 1-form symmetry of 5d \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

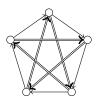
• As an example, take $\Gamma = \mathbb{Z}_5$.

イロト イポト イヨト イヨト

Idea of geometric engineering 1-form symmetry of 5d \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

- As an example, take $\Gamma=\mathbb{Z}_5.$
- The Mckay quiver is



(36)

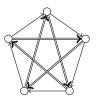
・ 同 ト ・ ヨ ト ・ ヨ ト

Idea of geometric engineering 1-form symmetry of 5d \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

(36)

1-form symmetry from CB

- \bullet As an example, take $\Gamma=\mathbb{Z}_5.$
- The Mckay quiver is



• The antisymmetric adjacency matrix of the Mckay quiver:

$$A(\mathbb{Z}_5) = \begin{pmatrix} 0 & 1 & 2 & -2 & -1 \\ -1 & 0 & 1 & 2 & -2 \\ -2 & -1 & 0 & 1 & 2 \\ 2 & -2 & -1 & 0 & 1 \\ 1 & 2 & -2 & -1 & 0 \end{pmatrix}$$
(37)

4 **A b b b b**

A 34 b

Idea of geometric engineering 1-form symmetry of 5d \mathcal{N} = 1 SCFTs 1-form symmetry in 4d \mathcal{N} = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

• The Smith normal form of $A(\mathbb{Z}_5)$:

 $\begin{pmatrix}
5 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$

(38)

- Hence $\Gamma_e^{(1)} = \mathbb{Z}_5$
- A full analysis: (Del Zotto, Heckman, Meynet, Moscrop, Zhang 22')

< 回 > < 三 > < 三 >

Idea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence

Geometric engineering of 4d $\mathcal{N} = 2$ SCFTs

• 4d N = 2 SUSY QFT is extremely rich field (Seiberg-Witten theory, Class S, AGT correspondence, quantum algebra...)

・ 同 ト ・ ヨ ト ・ ヨ ト

ldea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence

Geometric engineering of 4d $\mathcal{N} = 2$ SCFTs

- 4d N = 2 SUSY QFT is extremely rich field (Seiberg-Witten theory, Class S, AGT correspondence, quantum algebra...)
- Many interesting theories are non-Lagrangian, due to mutually non-local dyons
- E.g. the original Argyres-Douglas theory from special points in the CB of pure SU(3) gauge theory (Argyres, Douglas 95')

ldea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence

Geometric engineering of 4d $\mathcal{N} = 2$ SCFTs

- 4d N = 2 SUSY QFT is extremely rich field (Seiberg-Witten theory, Class S, AGT correspondence, quantum algebra...)
- Many interesting theories are non-Lagrangian, due to mutually non-local dyons
- E.g. the original Argyres-Douglas theory from special points in the CB of pure SU(3) gauge theory (Argyres, Douglas 95')
- String theory construction: IIB superstring on CY3 singularity (Shapere, Vafa 99')(Xie, Yau 15')(Wang, Xie, Yau, Yau 16')...

イロト イポト イヨト イヨト

Idea of geometric engineering 1-form symmetry of 5d ${\cal N}=1$ SCFTs 1-form symmetry in 4d ${\cal N}=2$ SCFTs and 5d/4d correspondence

Geometric engineering of 4d $\mathcal{N} = 2$ SCFTs

• More specifically, we consider the subcases of isolated hypersurface singularity (IHS) $X \in \mathbb{C}^4$:

$$F(x_1, x_2, x_3, x_4) = 0 , \quad \frac{\partial F}{\partial x_i} = 0 \text{ if and only if } x_i = 0.$$
 (39)

Geometric engineering of 4d $\mathcal{N} = 2$ SCFTs

• More specifically, we consider the subcases of isolated hypersurface singularity (IHS) $X \in \mathbb{C}^4$:

$$F(x_1, x_2, x_3, x_4) = 0 , \quad \frac{\partial F}{\partial x_i} = 0 \text{ if and only if } x_i = 0.$$
 (39)

• Original Argyres-Douglas theory: IIB on

$$F(x) = x_1^2 + x_2^2 + x_3^2 + x_4^3.$$
(40)

• Generalized Argyres-Douglas theory of type (G, G'):

$$F(x) = f_G(x_1, x_2) + f_{G'}(x_3, x_4).$$
(41)
$$f_G(x, y) = \begin{cases} x^2 + y^{n+1} & G = A_n \\ x^2 y + y^{n-1} & G = D_n \\ x^3 + y^4 & G = E_6 \\ x^3 + y^3 x & G = E_7 \\ x^3 + y^5 & G = E_8. \end{cases}$$

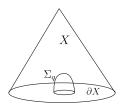
Higher-form symmetry from link toplogy

• Question: how to compute the higher-form symmetry of the 4d theory?

- 4 同 ト 4 三 ト 4 三 ト

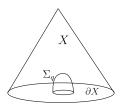
Higher-form symmetry from link toplogy

- Question: how to compute the higher-form symmetry of the 4d theory?
- Construct the charged object of *p*-form symmetry as branes wrapping torsional non-compact cycles (elements in relative homology)



Higher-form symmetry from link toplogy

- Question: how to compute the higher-form symmetry of the 4d theory?
- Construct the charged object of *p*-form symmetry as branes wrapping torsional non-compact cycles (elements in relative homology)



• The "defect group" \mathfrak{h}^q is given by

$$\mathfrak{h}^{q} = \operatorname{Tor}\left(\frac{H_{q}(X,\partial X)}{H_{q}(X)}\right) \hookrightarrow H_{q-1}(\partial X).$$
(43)

• (p+q-1)-brane wrapping $\Sigma_q
ightarrow$ charged under *p*-form symmetry!

Higher-form symmetry from geometry

• Define the link L_5 of X: take

$$B_{\epsilon} = \{ x \in \mathbb{C}^4 : \|x\| \le \epsilon \}, \qquad (44)$$

 $S_\epsilon = \partial B_\epsilon \cong S^7$, then the link

$$L_5 \cong S_\epsilon \cap X \,. \tag{45}$$

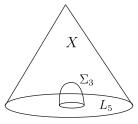
If X has a Ricci-flat metric, then L_5 is Sasaki-Einstein. The homology classes (computations see e. g. (Caibar, 99')):

$$\begin{aligned} &H_0(L_5,\mathbb{Z}) = \mathbb{Z}, \quad H_1(L_5,\mathbb{Z}) = 0, \quad H_2(L_5,\mathbb{Z}) = \mathbb{Z}^f \oplus (\mathfrak{f})^2 \\ &H_3(L_5,\mathbb{Z}) = \mathbb{Z}^f, \quad H_4(L_5,\mathbb{Z}) = 0, \quad H_5(L_5,\mathbb{Z}) = \mathbb{Z} \end{aligned}$$
(46)

法法国际 化基本

Higher-form symmetry from geometry

The torsion part (f)^2 of $H_2(L_5,\mathbb{Z})$ gives rise to torsional non-compact 3-cycles Σ_3 in ${\bm X}$



• In the 4d $\mathcal{N} = 2$ theory, two polarization choices: (1) "Electric theory": D3 branes wrapping $\Sigma_3 \rightarrow$ Wilson line in 4d, Non-trivial electric 1-form symmetry $\Gamma_e^{(1)} = \mathfrak{f}$ (2) "Magnetic theory": D3 branes wrapping $\Sigma_3 \rightarrow$ 't Hooft line in 4d, Non-trivial magnetic 1-form symmetry $\Gamma_m^{(1)} = \mathfrak{f}$

Higher-form symmetry from geometry

• The first computation of the 1-form symmetry of all generalized AD (G, G') theories! (Closset, Schafer-Nameki, Wang 20')(Del Zotto, Exteberria, Hosseini 20')

	$\Gamma^{(1)} = \mathfrak{f}$	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}
	A_1	0	0	0	0	0	0	0	0	0	0	0	0
	Aa	Zo	0	0	\mathbb{Z}_{2}	0	0	\mathbb{Z}_{2}	0	0	\mathbb{Z}_{2}	0	0
	A_3	0	\mathbb{Z}_2	0	0	0	\mathbb{Z}_2	0	0	0	\mathbb{Z}_2	0	0
$[A_k, D_m]$:	A_4	0	0	\mathbb{Z}_2^2	0	0	0	0	\mathbb{Z}_2^2	0	0	0	0
	A_5	0	0	0	\mathbb{Z}_2^2	0	0	0	0	0	\mathbb{Z}_2^2	0	0
	A_6	0	0	0	0	\mathbb{Z}_2^3	0	0	0	0	0	0	\mathbb{Z}_2^3
	A_7	0	0	0	0	0	\mathbb{Z}_2^3	0	0	0	0	0	0
	$ \begin{array}{c} A_{3} \\ A_{4} \\ A_{5} \\ A_{6} \\ A_{7} \\ A_{8} \end{array} $	\mathbb{Z}_2	0	0	\mathbb{Z}_2	0	0	\mathbb{Z}_2^4	0	0	\mathbb{Z}_2	0	0

- 4 周 ト 4 戸 ト 4 戸 ト

5d/4d correspondence

• Similarly, one can also consider the 5d $\mathcal{N} = 1$ theory $\mathcal{T}_{\mathbf{X}}^{5d}$ from M-theory on the same X, related to $\mathcal{T}_{\mathbf{X}}^{4d}$ by 5d/4d correspondence (Closset, Schafer-Nameki, Wang 20', 21')(Closset, Giacomelli, Schafer-Nameki, Wang 20')

• In $\mathcal{T}^{\mathrm{5d}}_{\mathbf{X}}$, two choices:

(1) M2 brane wrapping $\Sigma_3 \rightarrow \text{Electric 0-form symmetry } \Gamma_e^{(0)} = \mathfrak{f}$, corresponding to the 4d magnetic theory (2) M5 brane wrapping $\Sigma_3 \rightarrow \text{Magnetic 3-form symmetry } \Gamma_m^{(3)} = \mathfrak{f}$, corresponding to the 4d electric theory

• $\mathcal{T}_{\mathbf{X}}^{\mathrm{5d}}$ from IHS X does not have any 1-form symmetry!

イロト イポト イラト イラト

Conclusions

・ロト ・日ト ・モト・モート

≡ ∽ へ (~

Conclusions

- Higher-form symmetry is a new and trendy concept in theoretical physics
- We presented the computations of higher-form symmetries of QFTs using geometric engineering techniques in string theory
- Future: computing more examples, higher-group symmetry and other categorical symmetries.

< ロ > < 同 > < 三 > < 三 >

Conclusions

- Higher-form symmetry is a new and trendy concept in theoretical physics
- We presented the computations of higher-form symmetries of QFTs using geometric engineering techniques in string theory
- Future: computing more examples, higher-group symmetry and other categorical symmetries.
- Thanks!

< ロ > < 同 > < 三 > < 三 >

Introduction to higher-form symmetry Higher-form symmetry of QFTs from string theory Conclusions

Higher-form symmetry

• For *p*-form symmetry (p > 0) in Minkowski space-time, the symmetry group *G* has to be abelian.

イロト イボト イヨト イヨト

э

Higher-form symmetry

• For *p*-form symmetry (p > 0) in Minkowski space-time, the symmetry group *G* has to be abelian.

- Let $M^{(d-p-1)} \equiv M$ fits into a constant time slice
- The order in $U(g_1, M)U(g_2, M)$ means time ordering:

$$U(g_1, M)U(g_2, M) = U(g_1, M(t+\epsilon))U(g_2, M(t-\epsilon)).$$
(47)

ヘロト 人間ト ヘヨト ヘヨト

Higher-form symmetry

• For *p*-form symmetry (p > 0) in Minkowski space-time, the symmetry group *G* has to be abelian.

- Let $M^{(d-p-1)} \equiv M$ fits into a constant time slice
- The order in $U(g_1, M)U(g_2, M)$ means time ordering:

$$U(g_1, M)U(g_2, M) = U(g_1, M(t+\epsilon))U(g_2, M(t-\epsilon)).$$
(47)

• For p > 0, Because M on a constant time slice $t + \epsilon$ can be continuously deformed to $t - \epsilon$, the topological operators commute:

$$U(g_1, M)U(g_2, M) = U(g_2, M)U(g_1, M)$$
(48)

ヘロト 人間ト ヘヨト ヘヨト

Higher-form symmetry

• For *p*-form symmetry (p > 0) in Minkowski space-time, the symmetry group *G* has to be abelian.

- Let $M^{(d-p-1)} \equiv M$ fits into a constant time slice
- The order in $U(g_1, M)U(g_2, M)$ means time ordering:

$$U(g_1, M)U(g_2, M) = U(g_1, M(t+\epsilon))U(g_2, M(t-\epsilon)).$$
(47)

• For p > 0, Because M on a constant time slice $t + \epsilon$ can be continuously deformed to $t - \epsilon$, the topological operators commute:

$$U(g_1, M)U(g_2, M) = U(g_2, M)U(g_1, M)$$
(48)

• For p = 0 this does not hold, and the 0-form global symmetry can be non-abelian.

・ロト ・ 一下・ ・ ヨト・

-