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What’s higher-form symmetry

Examples of higher-form symmetry

Symmetries

• Symmetry is a central concept in physics

(1) Global symmetry: transformation parameter ε is independent of xµ

(2) Local symmetry: ε(xµ) is space-time dependent

• Examples of global symmetry:

1 Continuous space-time symmetry, e. g. Poincaré symmetry,

conformal symmetry, global SUSY, . . .

2 Discrete symmetry, e. g. C, P, T,. . .

3 Continuous internal symmetry, e. g. flavor symmetry, U(1)B , U(1)L

4 Higher-form symmetry, categorical symmetry
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Examples of higher-form symmetry

Ordinary 0-form global symmetry

• In this talk I will focus on QFTs in d-dimensional flat space-time.

• First review the 0-form global symmetry group G acting on local

operators (0d particles).

• Noether’s theorem: continuous 0-form symmetry gives rise to a

conserved charge.

• In differential form language,

Q(M(d−1)) =

∮
M(d−1)

j . (1)

• e. g. in EM, the (d − 1)-form converved current j is given by the

Maxwell’s equation as

d ∗ F = j . (2)
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Ordinary 0-form global symmetry

• Introduce the topological operator U(g ,M(d−1)) generating the 0-form

symmetry, which corresponds to g ∈ G ,

U(g ,M(d−1)) = g
∮
M(d−1) j , (3)

satisfying

U(g1,M
(d−1))U(g2,M

(d−1)) = U(g1g2,M
(d−1)) . (4)

• Acts on a 0-dim. local operator at a particular time slice in Rd .
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0-form symmetry

• The operator U(g ,M(d−1)) is unchanged by a small deformation of

M(d−1), but changes when M(d−1) crossed through a charged particle

(operator):

Unchanged

Changed

q q

• For example, for an M(d−1) surrounding a point P, and a local

operator Vi (P) charged under G , we have

U(g ,M(d−1))Vi (P) = R j
i (g)Vj(P) . (5)
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Higher-form symmetry

• Extend the story to a p-form (p > 0) symmetry with group G (Gaiotto,

Kapustin, Seiberg, Willett 14’)

• A p-form symmetry is generated by a (d − p − 1)-dimensional

topological operator U(g ,M(d−p−1)):

U(g1,M
(d−p−1))U(g2,M

(d−p−1)) = U(g1g2,M
(d−p−1)) . (6)

and acts on p-dimensional object(operator) Vi (C(p)).

• U(g ,M(d−p−1)) has non-trivial action on Vi (C(p)) when M(d−p−1) and

C(p) are non-trivially linked.
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Examples of higher-form symmetry

U(1) gauge theory

• 4d pure U(1) gauge theory, with action

S =
1

2g2

∫
F ∧ ∗F , F = dA , (7)

there is a U(1)e × U(1)m 1-form symmetry.

(1) The electric 1-form symmetry Γ
(1)
e = U(1)e corresponds to the

invariance under the shift

A→ A + λ , (8)

λ is a flat connection (dλ = 0).

• U(1)e is generated by the 2-form current

je =
2

g2
∗ F . (9)

Closed by e.o.m. d ∗ F = 0.
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Examples of higher-form symmetry

U(1) gauge theory

• The generator of the electric 1-form symmetry:

Ue(e iα,M(2)) = exp

(
i
2α

g2

∫
M(2)

∗F
)

(10)

here
∫
M(2) ∗F is the electric flux through the surface M(2).

• The charged object under U(1)e is the Wilson loop operator

Wn(C) = exp(in

∮
C

A) (11)
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Examples of higher-form symmetry

U(1) gauge theory

(2) The magnetic 1-form symmetry Γ
(1)
m = U(1)m shifts the dual photon

Ã→ Ã + λ̃ , dÃ = ∗dA (12)

U(1)m is generated by the 2-form current

jm =
1

2π
F . (13)

Closed by Jacobi identity dF = 0.

Um(e iη,M(2)) = exp

(
i
η

2π

∫
M(2)

F

)
(14)

here
∫
M(2) F is the magnetic flux through the surface M(2).

• The charged object under U(1)m is the ’t Hooft loop operator

Tn(C) = exp(in

∮
C

Ã) (15)
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What’s higher-form symmetry

Examples of higher-form symmetry

U(1) gauge theory with matter

• Introduce charged matter fields φi with charge qi ∈ Z, which are all

multiples of N.

• Consider the old U(1)e generator

Ue(e iα,M(2)) = exp

(
i
2α

g2

∫
M(2)

∗F
)
, (16)

2
g2 ∗ F is no longer closed since the new e.o.m. is

d ∗ F = jel ← electric current from matter fields . (17)

• The correct electric 1-form symmetry generators are

Ue(e iα,M(2)) , α =
2π

N
. (18)

• Hence U(1)e is broken to ZN !
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Examples of higher-form symmetry

U(1) gauge theory with matter

• Equivalently, denote the generator of u(1) gauge symmetry algebra by

Q, which acts on each matter field with

Q · Ci = qi . (19)

• In the language of Lie algebra, Q ∈ root lattice, Ci ∈ weight lattice.

• Now one try to find a multiple aQ, a ∈ Q, where all the matter fields

have integral charge under it:

aQ · Ci ∈ Z (20)

When gcd(qi ) = N, this aQ = Q/N (mod Q), which generates the ZN

1-form symmetry.

• In other words, the generator of the 1-form symmetry is an element of

the lattice Λcoweight/Λcoroot.
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Examples of higher-form symmetry

U(1) gauge theory with matter

• Extend the story to G = U(1)r gauge group with a number of matter

fields φi with charge

qi,j = Ci · Qj (i = 1, . . . ,m)(j = 1, . . . , r) (21)

under the j-th U(1).

• To compute the electric 1-form symmetry, one need to write down

linear combinations Q(k) =
∑

j bkjQj , such that all the matter fields have

integral charges under Q(k):

Ci · Q(k) ∈ Z (∀Ci ) . (22)
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Examples of higher-form symmetry

U(1) gauge theory with matter

• Solution in linear algebra - Smith Decomposition: take the

(m × r)-charge matrix q,

q = UDV , (23)

D is a (m × r)-matrix with the form

D =



α1 0 . . . 0

0 α2 . . . 0
...

...
. . .

...

0 0 0 αr

...
...

...
...

0 0 . . . 0


(24)

(αi ∈ Z), called the Smith normal form of q.

U is a m ×m matrix and V is a r × r matrix.
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Examples of higher-form symmetry

U(1) gauge theory with matter

• Read off each column of V , the linear combination

Q(i) =
1

αi
·
∑
j

Vj,kQj ∈ Λcoweight/Λcoroot (25)

are the generators of the 1-form symmetry,

Γ(1)
e =

⊕
i

(Z/αiZ) (26)

• Examples: suppose we have G = U(1)2 and matter fields with charges

q1 = (2,−1) , q2 = (−1, 2) (27)

q =

(
2 −1

−1 2

)
=

(
1 1

1 2

)(
1 0

0 3

)(
1 −1

0 1

)
(28)

From the form of D, we can read off Γ
(1)
e = Z3, and the generator is

QZ3 =
1

3
(−Q1 + Q2) (29)
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What’s higher-form symmetry

Examples of higher-form symmetry

non-abelian gauge theory

(1) 4d pure SU(N) gauge theory

• SU(N) has a ZN center

• Electric 1-form symmetry Γ
(1)
e = ZN acting on the Wilson loop operator

→ confining string

• Confined phase!

(2) 4d pure PSU(N) gauge theory

• The center is trivial, but π1(PSU(N)) = ZN

• Magnetic 1-form symmetry Γ
(1)
m = ZN , deconfined phase.

• In a particular gauge theory with g = su(N), the ZN Wilson loop and ’t

Hooft loop cannot coexist → choice of polarization.

• This choice is not manifest in the action

S =

∫
1

2g2
tr(F ∧ ∗F ) . (30)
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What’s higher-form symmetry

Examples of higher-form symmetry

non-abelian gauge theory

• One can compute the 1-form symmetry using the U(1) techniques after

SU(N)→ U(1)N−1 (Coulomb branch).

• Add matter fields in fundamental rep. of SU(N) → breaks ZN 1-form

symmetry

• Adj. matter does not break the ZN 1-form symmetry.
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What’s higher-form symmetry

Examples of higher-form symmetry

Physical significance

• The Lagrangian definition of QFT is not complete! The same

Lagrangian leads to different sets of extended operators, classified by

higher symmetry.

• Higher-form symmetry ↔ confinement

• Swampland conjectures: a quantum gravity theory has no global

symmetry, extends to the case of higher-form symmetries.

• Help us to characterize and understand non-Lagrangian QFTs (next

parts)
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Higher-form symmetry of QFTs from string

theory
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Idea of geometric engineering

• Putting high-dimensional superstring/M/F-theory on geometric spaces

→ lower dimensional gravity/QFT.

• String theory basics:

(1) Superstring in 10d; M-theory in 11d

(2) Extended objects: fundamental string, D-branes; M2-brane, M5-brane

. . .

(3) Supersymmetry: extension of Poincaré algebra by fermionic operators

(supercharges), into super-Poincaré algebra

(4) They are UV complete descriptions of quantum gravity
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Idea of geometric engineering

• We consider a product space Rd−1,1 × X

Singularity

QFT: Vol(X) SCFT

End point of RG flow

Deformation

QG: Vol(X) finite

Couple with

gravity
Decouple

gravity

Brane objects wrapping 

topological cycles

Massive BPS states

volume of cycles     0

BPS states become massless
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Idea of geometric engineering

• In this talk, X is a non-compact Calabi-Yau threefold with SU(3)

holonomy

• Number of supercharges: 32→ 8, 4d N = 2, 5d N = 1 or 6d (1,0)

• If X has a singularity at origin → SCFT, often non-Lagrangian

(1) 1-form symmetry of 5d N = 1 SCFTs

(Morrison, Schafer-Nameki, Willett 19’)(Albertini, Del Zotto, Exterbarria, Hosseini

20’)(Bhardwaj, Schafer-Nameki 20’)(Tian, YNW 21’). . .

(2) 1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

(Closset, Schafer-Nameki, YNW 20’)(Closset, Giacomelli, Schafer-Nameki, YNW

20’)(Closset, Schafer-Nameki, YNW 21’)

(3) Higher-form symmetry of 6d (1,0) SCFTs

(Bhardwaj, Schafer-Nameki 20’)(Apruzzi, Dierigl, Ling, 21’)(Hubner, Morrison,

Schafer-Nameki, YNW 22’). . .
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Basics of 5d (SUSY) gauge theories

S =

∫
d5x

[
1

g2
YM

Tr(FµνFµν) + iψ̄ /Dψ + . . .

]
(31)

• Action is non-renormalizable, always strongly coupled in the UV

• For some 5d N = 1 supersymmetric gauge theories, it can be UV

completed to a strongly coupled superconformal field theory when

gYM →∞ (Seiberg 96’)(Intriligator, Morrison, Seiberg 96’).

UV SCFT fixed point

RG flow

Relevant deformation

5d N=1 gauge theory

• UV completion of su(2) + NF : Seiberg EN+1(N ≤ 7) theories with

gF = eN+1 (Seiberg 96’)
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Geometric construction of 5d SCFTs

• 11d M-theory on canonical threefold singularity (Xie, Yau 17’)

• Classification of canonical threefold singularities X → partial

classification of 5d N = 1 SCFT T 5d
X !

X
Singularity
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Geometric construction of 5d SCFTs

• Singularity X and the 5d SCFTs are hard to study, one considers

instead the desingularization of X :

X
Singularity

Resolution(CB) Deformation(HB)
2,4-cycles 3-cycles

• Resolution ↔ Coulomb branch of T 5d
X , SU(N)→ U(1)N−1!
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

• Fundamental objects: M2, M5 branes, coupled to C3 gauge field.

• M-theory on the resolved space X̃ , with new cycles:

(1) compact 4-cycles (complex surfaces) Sj (j = 1, . . . , r)

(2) non-compact 4-cycles Dα (α = 1, . . . , f )

(3) compact 2-cycles (complex curves) Ci

S
D

C
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

(1) Compact 4-cycles Sj

C3 =
r∑

j=1

Ai ∧ ωj ← Poincaré dual to Sj in X̃ (32)

• # of Sj : CB rank r

(2) Non-compact 4-cycles Dα

• Generates Cartan subalgebra of the flavor symmetry GF

• # of Dα = f

(3) Compact 2-cycles Ci

• M2-brane wrapping compact 2-cycles Ci : Charged particle with charge

qi,j = Ci · Sj under U(1)j gauge group.

Yi-Nan Wang Higher-form symmetries of QFT from string theory 28 / 42



Introduction to higher-form symmetry

Higher-form symmetry of QFTs from string theory

Conclusions

Idea of geometric engineering

1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

CB of 5d SCFT in M-theory

(1) Compact 4-cycles Sj

C3 =
r∑

j=1
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

• From the charge matrix qi,j , compute the electric 1-form symmetry Γ
(1)
e

on the CB from Smith decomposition! (Morrison, Schafer-Nameki, Willett 19’)

• Technically, the resolution of X is difficult to compute in many cases.

• Application to 5d orbifold SCFTs, constructed as M-theory on

X = C3/Γ, Γ ⊂ SU(3) is a finite group. (Tian, YNW 21’)(Acharya, Lambert,

Najjar, Tian, Svanes 21’)

• An elegant mathematical structure: McKay correspondence.

(1) Conjugacy classes of Γ ↔ topological cycles of X̃

(2) Irreps ρi of Γ ↔ vector bundles on X̃ .
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

• Applying a version of 3d McKay correspondence (Ito, Nakajima 00’),

proved in (Bridgeland, King, Reid 01’)

Take the McKay quiver defined by (π is the natural 3-dim. rep. of Γ)

ρi ⊗ π =
⊕
i

ajiρj , (33)

define the antisymmetric adjacency matrix A(Γ) = {Aij} by

Aij = aji − aij , (34)

then A(Γ) has the same Smith normal form as the larger intersection

matrix M(Γ):

M(Γ) =

 0 0 0

0 0 (qT )

0 q 0

 , (35)

• From q-matrix, one can compute the 1-form symmetry Γ
(1)
e !
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

• As an example, take Γ = Z5.

• The Mckay quiver is

(36)

• The antisymmetric adjacency matrix of the Mckay quiver:

A(Z5) =


0 1 2 −2 −1

−1 0 1 2 −2

−2 −1 0 1 2

2 −2 −1 0 1

1 2 −2 −1 0

 (37)
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

1-form symmetry from CB

• The Smith normal form of A(Z5):
5 0 0 0 0

0 5 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

 (38)

• Hence Γ
(1)
e = Z5

• A full analysis: (Del Zotto, Heckman, Meynet, Moscrop, Zhang 22’)
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Geometric engineering of 4d N = 2 SCFTs

• 4d N = 2 SUSY QFT is extremely rich field (Seiberg-Witten theory,

Class S, AGT correspondence, quantum algebra. . . )

• Many interesting theories are non-Lagrangian, due to mutually

non-local dyons

• E.g. the original Argyres-Douglas theory from special points in the CB

of pure SU(3) gauge theory (Argyres, Douglas 95’)

• String theory construction: IIB superstring on CY3 singularity (Shapere,

Vafa 99’)(Xie, Yau 15’)(Wang, Xie, Yau, Yau 16’). . .
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• More specifically, we consider the subcases of isolated hypersurface

singularity (IHS) X ∈ C4:

F (x1, x2, x3, x4) = 0 ,
∂F

∂xi
= 0 if and only if xi = 0 . (39)

• Original Argyres-Douglas theory: IIB on

F (x) = x21 + x22 + x23 + x34 . (40)

• Generalized Argyres-Douglas theory of type (G ,G ′):

F (x) = fG (x1, x2) + fG ′(x3, x4) . (41)

fG (x , y) =



x2 + yn+1 G = An

x2y + yn−1 G = Dn

x3 + y4 G = E6

x3 + y3x G = E7

x3 + y5 G = E8 .

(42)
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1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Higher-form symmetry from link toplogy

• Question: how to compute the higher-form symmetry of the 4d theory?

• Construct the charged object of p-form symmetry as branes wrapping

torsional non-compact cycles (elements in relative homology)

• The “defect group” hq is given by

hq = Tor

(
Hq(X , ∂X )

Hq(X )

)
↪→ Hq−1(∂X ) . (43)

• (p + q − 1)-brane wrapping Σq → charged under p-form symmetry!
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Higher-form symmetry from geometry

• Define the link L5 of X : take

Bε = {x ∈ C4 : ‖x‖ ≤ ε} , (44)

Sε = ∂Bε ∼= S7, then the link

L5 ∼= Sε ∩ X . (45)

If X has a Ricci-flat metric, then L5 is Sasaki-Einstein. The homology

classes (computations see e. g. (Caibar, 99’)):

H0(L5,Z) = Z, H1(L5,Z) = 0, H2(L5,Z) = Zf ⊕ (f)2

H3(L5,Z) = Zf , H4(L5,Z) = 0, H5(L5,Z) = Z
(46)

Yi-Nan Wang Higher-form symmetries of QFT from string theory 36 / 42



Introduction to higher-form symmetry

Higher-form symmetry of QFTs from string theory

Conclusions

Idea of geometric engineering

1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Higher-form symmetry from geometry

The torsion part (f)2 of H2(L5,Z) gives rise to torsional non-compact

3-cycles Σ3 in X

• In the 4d N = 2 theory, two polarization choices:

(1) “Electric theory”: D3 branes wrapping Σ3 → Wilson line in 4d,

Non-trivial electric 1-form symmetry Γ
(1)
e = f

(2) “Magnetic theory”: D3 branes wrapping Σ3 → ’t Hooft line in 4d,

Non-trivial magnetic 1-form symmetry Γ
(1)
m = f
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1-form symmetry of 5d N = 1 SCFTs

1-form symmetry in 4d N = 2 SCFTs and 5d/4d correspondence

Higher-form symmetry from geometry

• The first computation of the 1-form symmetry of all generalized AD

(G ,G ′) theories! (Closset, Schafer-Nameki, Wang 20’)(Del Zotto, Exteberria,

Hosseini 20’)

Yi-Nan Wang Higher-form symmetries of QFT from string theory 38 / 42



Introduction to higher-form symmetry

Higher-form symmetry of QFTs from string theory

Conclusions

Idea of geometric engineering

1-form symmetry of 5d N = 1 SCFTs
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5d/4d correspondence

• Similarly, one can also consider the 5d N = 1 theory T 5d
X from

M-theory on the same X , related to T 4d
X by 5d/4d correspondence

(Closset, Schafer-Nameki, Wang 20’, 21’)(Closset, Giacomelli, Schafer-Nameki, Wang

20’)

• In T 5d
X , two choices:

(1) M2 brane wrapping Σ3 → Electric 0-form symmetry Γ
(0)
e = f,

corresponding to the 4d magnetic theory

(2) M5 brane wrapping Σ3 → Magnetic 3-form symmetry Γ
(3)
m = f,

corresponding to the 4d electric theory

• T 5d
X from IHS X does not have any 1-form symmetry!
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• Higher-form symmetry is a new and trendy concept in theoretical

physics

• We presented the computations of higher-form symmetries of QFTs

using geometric engineering techniques in string theory

• Future: computing more examples, higher-group symmetry and other

categorical symmetries.

• Thanks!
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Higher-form symmetry

• For p-form symmetry (p > 0) in Minkowski space-time, the symmetry

group G has to be abelian.

• Let M(d−p−1) ≡ M fits into a constant time slice

• The order in U(g1,M)U(g2,M) means time ordering:

U(g1,M)U(g2,M) = U(g1,M(t + ε))U(g2,M(t − ε)) . (47)

• For p > 0, Because M on a constant time slice t + ε can be

continuously deformed to t − ε, the topological operators commute:

U(g1,M)U(g2,M) = U(g2,M)U(g1,M) (48)

• For p = 0 this does not hold, and the 0-form global symmetry can be

non-abelian.
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