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p̄p scattering measurements at LEAR

Measurement Incoming p̄ momentum (MeV/c) Experiment
integrated cross sections
σtot (p̄p) 222-599 (74 momenta) PS172

181,219,239,261,287,505,590 PS173
σann(p̄p) 177-588 (53 momenta) PS173

38-174 (14 momenta) PS201
p̄p elastic scattering
ρ = Re f (0)/Im f (0) 233,272,550,757,1077 PS172

181,219,239,261,287,505,590 PS173
dσ/dΩ 679-1550 (13 momenta) PS172

181,287,505,590 PS173
439,544,697 PS198

A0n 497-1550 (15 momenta) PS172
439,544,697 PS173

D0n0n 679-1501 (10 momenta) PS172
p̄p charge exchange
dσ/dΩ 181-595 (several momenta) PS173

546,656,693,767,875,1083,1186,1287 PS199
601.5,1202 PS206

A0n 546,656,767,875,979,1083,1186,1287 PS199
D0n0n 546,875 PS199
Kn00n 875 PS199
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Revival of antinucleon-nucleon physics

Near-threshold enhancement in the p̄p invariant-mass spectrum:
J/ψ → γp̄p → BES collaboration (2003, 2012, 2016)
B+ → K +p̄p → BaBar collaboration (2005)
e+e− → p̄p → FENICE (1998), BaBar (2006,13), BESIII (2019)
(p̄p → e+e− → PS170 (1994))

⇒ new resonances, p̄p bound states, exotic glueball states ?

Facility for Antiproton and Ion Research (FAIR)

PANDA Project
Study of the interactions between antiprotons and fixed
target protons and nuclei in the momentum range of
1.5-15 GeV/c using the high energy storage ring HESR
PAX Collaboration
experiments with a polarized antiproton beam
transversity distribution of the valence quarks in the proton
N̄N double-spin observables
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N̄N partial-wave analysis

R. Timmermans et al., PRC 50 (1994) 48

use a meson-exchange potential for the long-range part

apply a strong absorption at short distances (boundary condition) in each
individual partial wave (≈ 1.2 fm)

30 parameters, fitted to a selection of N̄N data (3646!)

However, resulting amplitudes are not explicitly given:
no proper assessment of the uncertainties (statistical errors)

phase-shift parameters for the 1S0 and 1P1 partial waves are not pinned down accurately

D. Zhou and R. Timmermans, PRC 86 (2012) 044003

use now potential where the long-range part is fixed from chiral EFT (N2LO)

somewhat larger number of N̄N data (3749!)

now, resulting amplitudes and phase shifts are given!

lowest momentum: plab = 100 MeV/c (Tlab = 5.3 MeV)

highest total angular momentum: J = 4
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N̄N PWA: p̄p → p̄p

 0.01

 0.1

 1

 10

 100

-1 -0.5  0  0.5  1

dσ
/d

Ω
(m

b)

cosθ

   plab = 680.1 MeV/c

PWA
Sakamoto et al. (1982)

 0.01

 0.1

 1

 10

 100

-1 -0.5  0  0.5  1

dσ
/d

Ω
(m

b)

cosθ

   plab = 680.1 MeV/c

PWA
Sakamoto et al. (1982)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5  0  0.5  1

A
y

cosθ

          plab = 679.0 MeV/c

PWA
Kunne et al. (1988, 1989)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5  0  0.5  1

A
y

cosθ

          plab = 679.0 MeV/c

PWA
Kunne et al. (1988, 1989)

 0.01

 0.1

 1

 10

 100

-1 -0.5  0  0.5  1

dσ
/d

Ω
(m

b)

cosθ

             plab = 690.0 MeV/c

PWA
Eisenhandler et al. (1976)

 0.01

 0.1

 1

 10

 100

-1 -0.5  0  0.5  1

dσ
/d

Ω
(m

b)

cosθ

             plab = 690.0 MeV/c

PWA
Eisenhandler et al. (1976)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5  0  0.5  1

A
y

cosθ

 plab = 697.0 MeV/c

PWA
Bertini et al. (1989)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5  0  0.5  1

A
y

cosθ

 plab = 697.0 MeV/c

PWA
Bertini et al. (1989)

FIG. 5. (Color online) Differential cross sections and analyzing powers for elastic scattering as

function of angle in the center-of-mass system. The PWA result is given by the drawn red line

and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Sakamoto et

al. [59] χ2
min = 39.2 for 38 points dσ/dΩ; for Kunne et al. [70, 71] χ2

min = 25.1 for 26 points Ay; for

Eisenhandler et al. [81] χ2
min = 94.5 for 88 points dσ/dΩ; for Bertini et al. [83] χ2

min = 20.8 for 32

points Ay.

strong. The dominance of the tensor force is seen in particular in the charge-exchange

pp → nn reaction. For low energies of the final-state nn system the strong tensor force leads

to large cross sections for the transitions ℓ(nn) = ℓ(pp) − 2, in particular 3D1 → 3S1 and

3F2 → 3P2. This is similar to the strangeness-exchange reaction pp → ΛΛ, where these off-

diagonal tensor-force transitions due to K(494) and K∗(892) exchange dominate the cross

section in the ΛΛ threshold region [43, 44]. For these transitions, there is a large overlap

between the wave functions of the initial pp state and the final nn or ΛΛ state [44] at low

energy. The contributions from the spin-triplet states are much larger than the contributions

from the spin-singlet states, especially for pp → nn. The total annihilation cross section is

29
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N̄N PWA p̄p → n̄n
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FIG. 9. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.7 for 12 points dσ/dΩ at backward angles, χ2

min = 1.0 for 2 points dσ/dΩ at

forward angles; for Birsa et al. [73] χ2
min = 23.3 for 22 points Ay.

determined by the accuracy of the data. For the analyzing powers, on the other hand,

the theoretical uncertainties are in general smaller than the errors of the data points. The

theoretical uncertainty is very small for forward angles. For backward angles, where there

are no data available, this uncertainty increases. Fig. 8 shows the very limited data available

for the depolarization Dyy for elastic scattering at 679, 783, and 886 MeV/c. There are only

a few data points in the backward hemisphere and the data points have large error bars.

In this case, the theoretical uncertainty for the PWA prediction is much smaller than these

error bars, which implies that there is little new information in these data and that the fit

would not change significantly if they were left out of the fit. The theoretical uncertainty is

again very small for forward angles.

Figs. 9, 10, 11, and 12 show the differential cross sections dσ/dΩ and the analyzing

powers Ay for charge-exchange scattering pp → nn at 546, 656, 767, and 875 MeV/c,

respectively. Like for the elastic case, one observes that, in general, the uncertainty on

the PWA prediction for the differential cross sections is determined by the accuracy of the

data. For the analyzing powers, on the other hand, the theoretical uncertainties are in

general smaller than the errors of the data points. For some of the differential cross-section

measurements, we introduced different normalization parameters for the data in the forward

32
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FIG. 10. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.9 for 10 points dσ/dΩ at backward angles, χ2

min = 14.6 for 7 points dσ/dΩ at

forward angles; for Birsa et al. [78] χ2
min = 11.2 for 17 points Ay; for Birsa et al. [73] χ2

min = 23.5

for 21 points Ay.

and in the backward hemisphere, which were taken with different detectors. The charge-

exchange differential cross section is highly anisotropic, because of the contributions of many,

high-ℓ partial waves. It has a “spike” at the most forward angles and it is flat at backward

angles. It exhibits a very typical dip-bump structure at forward angles, which is due to the

interference of the OPE interaction with a background due to short-range interactions [91].

The precise form of this structure evolves rapidly as function of energy, from a rather flat

plateau structure at 546 MeV/c to a pronounced dip-bump structure at 875 MeV/c. The

structure was measured accurately at 601 MeV/c by the PS206 experiment at the end of

the LEAR era [76, 77]. The high-quality charge-exchange differential cross sections from

Ref. [77] are shown in Fig. 13. At the time of Ref. [23], only the data at 693 MeV/c shown

in Fig. 13 were available [78], but these differential cross sections did not pin down the

dip-bump structure. The PWA of Ref. [23] predicted a more pronounced structure for this

data set.

In Fig. 14 the few data sets available for the depolarization Dyy at 546 and 875 MeV/c

and the spin transfer Kyy at 875 MeV/c in charge-exchange scattering are shown. The data

points have large error bars, and also in this case the theoretical uncertainty for the PWA

33
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The N̄N interaction
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Traditional approach: meson-exchange

I) V N̄N
el ... derived from an NN potential via G-parity

(Charge conjugation plus 180o rotation around the y axis in isospin space)
⇒

V N̄N (π, ω) = −V NN (π, ω) odd G− parity

V N̄N (σ, ρ) = +V NN (σ, ρ) even G− parity

...

II) V N̄N
ann

employ a phenomenological optical potential, e.g.

Vopt (r) = (U0 + iW0) e−r2/(2a2)

with parameters U0, W0, a fixed by a fit to N̄N data

examples: Dover/Richard (1980,1982), Paris (1982,...,2009), Nijmegen (1984),
Jülich (1991,1995), ...
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Meson-exchange: Jülich N̄N model

I) Vel
starting point: Bonn NN potential
(R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149 (1986) 1)

(G-parity: Charge conjugation plus 180o rotation around the y axis in isospin space)
⇒

VN̄N (π, ω) = −VNN (π, ω) − odd G− parity

VN̄N (σ, ρ) = +VNN (σ, ρ) − even G− parity

well defined over whole range

no modification of short-range part is done
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The Jülich N̄N model

II) Vann

phenomenological optical potential (A)

Vopt (r) = (U0 + iW0)e−r2/(2a2)

(state- and energy independent!)

Fit to N̄N data [σtot , σel , σann] up to plab ≈ 800 MeV/c
(Tlab ≈ 300 MeV)
best fit:
a = 0.36 fm, U0 = −0.63 GeV, W0 = −4.567 GeV
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The Jülich N̄N model

microscopic annihilation model (for 2-meson channels) (D)

• T. Hippchen et al., PRC 44 (1991) 1323; V. Mull et al., PRC 44 (1991) 1337

• V. Mull & K. Holinde, PRC 51 (1995) 2360
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p̄p integrated cross sections

—– D (microscopic) – – A (phenomenological)
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p̄p differential cross sections

—– D (microscopic) – – A (phenomenological)

Johann Haidenbauer Final state interaction



p̄p → n̄n differential cross sections

—– D (microscopic) – – A (phenomenological)
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p̄p polarizations

—– D (microscopic) – – A (phenomenological)
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p̄p → n̄n polarizations

—– D (microscopic) – – A (phenomenological)
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Chiral Effective Field Theory

S. Weinberg, Physica 96A (1979) 327; PLB 251 (1990) 288

Respect/exploit symmetries of the underlying QCD

Different scales: Separation of low and high energy dynamics
• low-energy dynamics is described in terms
of the relevant degrees of freedom (e.g. pions)
• high-energy dynamics remains unresolved

→ absorbed into contact terms
(U.-G. Meißner)

Power counting
Expand interaction in powers Qn = (q/Λ)n, n = 0, 1, 2, ...
q ... soft scale (nucleon three-momentum, pion four-momentum, pion
mass)
Λ ... hard scale (≈ 1 GeV ... mρ, MN )
⇒ systematic improvement of results by going to higher order (power)
⇒ estimation of theoretical uncertainty

expected to work for q < Λ
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NN interaction in chiral effective field theory

structure of the N̄N interaction is practically identical to the one for NN scattering, the

potential given in Ref. [38] can be adapted straightforwardly for the N̄N case. However,

for the ease of the reader and also for defining our potential uniquely we summarize the

essential features below and we also provide explicit expressions in Appendix A.

LO

Q0

NLO

Q2

N2LO

Q3

N3LO

Q4

Figure 1. Relevant diagrams up-to-and-including N3LO. Solid and dashed lines denote antinucle-

ons/nucleons and pions, respectively. The square and diamond symbolize contact vertices with two

and four derivatives, respectively. The dots denote a leading πN vertex, while the filled circle and

the ring symbolize subleading and sub-subleading πN vertices, respectively. Q denotes a small pa-

rameter (external momentum and/or pion mass). From the iterated diagrams at N2LO and N3LO,

only the irreducible contribution is part of the potential.

2.1 Pion-exchange contributions

The one-pion exchange potential is given by

V1π(q) =

(
gA
2Fπ

)2 (
1− p2 + p′2

2m2

)
τ 1 · τ 2

σ1 · qσ2 · q
q2 +M2

π

, (2.1)

where q = p′−p is the transferred momentum defined in terms of the final (p′) and initial

(p) center-of-mass momenta of the baryons (nucleon or antinucleon). Mπ andm denote the

– 4 –

• 4N contact terms involve low-energy constants (LECs) ... parameterize unresolved short-range physics

⇒ need to be fixed by fit to experiments
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NN interaction in chiral effective field theory 25
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FIG. 9: Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cutoff of R = 0.9 fm
in comparison with the NPWA [41] (solid dots) and the GWU single-energy np partial wave analysis [89] (open triangles). The
light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands depict the estimated
theoretical uncertainties at NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have
been used in the fits at N3LO.

R = 1.2 fm. In summary, we find that the suggested approach for error estimation is more reliable than the standard
procedure by means of cutoff bands and, in addition, has the advantage of being applicable for a fixed value of R.
This allows one to avoid the artificial increase of the theoretical uncertainty due to cutoff artefacts, the issue which
is especially relevant at high energies where the chiral expansion converges slower. The issue with using the cutoff
bands is expected to become particularly important at next-to-next-to-next-to-next-to-leading order (N4LO) in the
chiral expansion. In particular, we expect that the residual cutoff dependence at N4LO will be comparable to that
at N3LO, and that it will significantly overestimate the real N4LO uncertainty at higher energies in a close analogy
to what is observed at N2LO. Last but not least, the ability to carry out independent calculations with quantified
uncertainties also provides a useful consistency check.

Next, we show in Fig. 9 the estimated uncertainty of the S-, P- and D-wave phase shifts and the mixing angles ε1 and
ε2 at NLO, N2LO and N3LO based on R = 0.9 fm. The various bands result by adding/subtracting the estimated
theoretical uncertainty, ±∆δ(Elab) and ±∆ε(Elab), to/from the results shown in Fig. 3. In a similar way, we also
looked at selected neutron-proton scattering observables at different energies shown in Figs. 10-13. For the lowest
considered energy of Elab = 50 MeV, we show, in addition to the results using R = 0.9 fm, also our predictions for the
softest cutoff choice of R = 1.2 fm. While the uncertainty is clearly increased, the results actually still appear to be
rather accurate at this energy. Our results agree with the ones of the NPWA for all considered observables and energies
indicating that the employed way to estimate the uncertainties is quite reliable. Generally, we find that chiral EFT
at N3LO allows for very accurate results at energies below Elab ∼ 100 MeV and still provides accurate description of
the data at energies of the order of Elab ∼ 200 MeV. These findings are particularly promising for the ongoing studies
of the three-nucleon force whose contributions to nucleon-deuteron scattering observables are believed to increase at
energies above EN, lab ∼ 100 MeV. It would be interesting to perform a similar analysis of nucleon-deuteron scattering
data based on the improved chiral NN potentials in order to see whether accurate predictions are to be expected at
such energies at N3LO. Work along these lines is in progress.

Finally, we emphasize that our results depend little on the specific choice of the regulator function. In order to

E. Epelbaum, H. Krebs, Ulf-G. Meißner (EKM), EPJA 51 (2015) 53

—— LO, —— NLO, —— N3LO

(see Reinert, Epelbaum, Krebs, EPJA 54 (2018) 86, for present status (N4LO, N4LO+))
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The N̄N interaction in chiral EFT

V NN = V1π + V2π + V3π + ...+ Vcont

V N̄N
el = −V1π + V2π −V3π + ...+ Vcont

V N̄N
ann =

∑
X V N̄N→X X =̂ π, 2π, 3π, 4π, ...

• V1π , V2π , ... can be taken over from chiral EFT studies of the NN interaction

• Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N2LO)
starting point: NN interaction by Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362

• Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N3LO)
starting point: NN interaction by Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53

• Vcont ... same structure as in NN: Vcont = C̃ + C (p2 + p′2) + ...

However, now the LECs have to be determined by a fit to N̄N data (phase shifts,
inelasticites)!
no Pauli principle→ more partial waves, more contact terms

• V N̄N
ann has no counterpart in NN

empirical information: annihilation is short-ranged and practically energy-independent

V N̄N
ann;eff =

∑
X V N̄N→X G0

X V X→N̄N , V N̄N→X (p, pX ) ≈ pL (a+b p2+...); pX ≈ const.
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regularized Lippmann-Schwinger equation

T L′L(p′, p) = V L′L(p′, p) +
∑
L′′

∫ ∞
0

dp′′p′′2

(2π)3

V L′L′′(p′, p′′) T L′′L(p′′, p)

2Ep − 2Ep′′ + iη

• N̄N potential up to N2LO (Kang et al., 2014)
employ the non-local regularization scheme of EGM (NPA 747 (2005) 362)

(V (p′, p)→ f Λ(p′) V (p′, p) f Λ(p); f Λ(p) = e−(p/Λ)4
)

• N̄N potential up to N3LO (Dai et al., 2017)
employ the regularization scheme of EKM (EPJA 51 (2015) 53)

(Vπ(q)→ Vπ(r)× fR (r)→ V reg
π (q); fR (r) =

[
1− exp(−r2/R2)

]6
)

(Vcont : V (p′, p)→ f Λ(p′) V (p′, p) f Λ(p); f Λ(p) = e−(p/Λ)2
R = 0.8-1.2 fm; Λ = 2/R)

• Fit to phase shifts and inelasticity parameters in the isospin basis
(D. Zhou, R.G.E. Timmermans, PRC 86 (2012) 044003)

• Calculation of observables is done in particle basis:
? Coulomb interaction in the p̄p channel is included
? the physical masses of p and n are used
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Results for 3S1-3D1 phase shifts (N2LO)

Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N2LO)
(bands represent cutoff variations!)

108 J. Haidenbauer et al. / Nuclear Physics A 929 (2014) 102–118

Fig. 2. Real and imaginary parts of the phase shift in the 3S1–3D1 partial wave in the isospin I = 0 and I = 1 channels. 
The red/dark band shows the chiral EFT results up to NNLO while the green/light band are results to NLO. The bands 
reflect the cutoff dependence of the results as discussed in Ref. [38]. The solid line is the prediction of the Jülich N̄N

model A(OBE) [22]. The circles represent the solution of the partial-wave analysis of Ref. [37].
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Fig. 2. Real and imaginary parts of the phase shift in the 3S1–3D1 partial wave in the isospin I = 0 and I = 1 channels. 
The red/dark band shows the chiral EFT results up to NNLO while the green/light band are results to NLO. The bands 
reflect the cutoff dependence of the results as discussed in Ref. [38]. The solid line is the prediction of the Jülich N̄N

model A(OBE) [22]. The circles represent the solution of the partial-wave analysis of Ref. [37].

—— Jülich A (OBE); —— N2LO; —— NLO

• PWA of Zhou, Timmermans, PRC 86 (2012) 044003
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N̄N phase shifts (Dai et al., 2017; N3LO)
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Figure 2: Real and imaginary parts of variousN̄N phase shifts at N3LO for cutoffs R= 0.8− 1.2 fm. The filled circles represent the solution of the
p̄p PWA [32].

10

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200

Tlab (MeV) Tlab (MeV) Tlab (MeV) Tlab (MeV)

Johann Haidenbauer Final state interaction



N̄N phase shifts (N3LO)
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Figure 2: Real and imaginary parts of variousN̄N phase shifts at N3LO for cutoffs R= 0.8− 1.2 fm. The filled circles represent the solution of the
p̄p PWA [32].
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Uncertainty

Uncertainty for a given observable X(p):
(Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)

(S. Binder et al. [LENPIC coll.], PRC 93 (2016) 044002)

estimate uncertainty via

• the expected size of higher-order corrections
• the actual size of higher-order corrections

∆XLO = Q2|XLO | (XNLO ≈ Q2XLO )

∆XNLO = max
(

Q3|XLO |,Q1|δXNLO |
)

; δXNLO = XNLO−XLO

∆XN2LO = max
(

Q4|XLO |,Q2|δXNLO |,Q1|δXN2LO |
)

; δXN2LO = XN2LO−XNLO

∆XN3LO = max
(

Q5|XLO |,Q3|δXNLO |,Q2|δXN2LO |,Q1|δXN3LO |
)

; δXN3LO = XN3LO−XN2LO

expansion parameter Q is defined by

Q = max

(
p

Λb
,

mπ
Λb

)
; p ... N̄N on−shell momentum

Λb ... breakdown scale→ Λb = 500− 600 MeV [for R = 0.8− 1.2 fm] (EKM, 2015)
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Figure 6: Real and imaginary parts of various̄NN phase shifts for the potential with cutoff R = 0.9 fm. Results at N3LO (black/solid line),
N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO (medium/cyan), and NLO
(light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32].
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Figure 6: Real and imaginary parts of various̄NN phase shifts for the potential with cutoff R = 0.9 fm. Results at N3LO (black/solid line),
N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO (medium/cyan), and NLO
(light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32].
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p̄p integrated cross sections

4.2. Observables
In our first study ofN̄N scattering within chiral EFT [42] we focused on the phase shifts and inelasticities. Ob-

servables were not considered. One reason for this was that,at that time, our computrt code was only suitable for
calculations in the isospin basis. A sensible calculation of observables, specifically at low energies where chiral EFT
should work best, has to be done in the particle basis becausethe Coulomb interaction in the ¯pp system has to be
taken into account and also the mass difference between proton and neutron. The latter leads to different physical
thresholds for the ¯pp andn̄nchannels which has a strong impact on the reaction amplitudeclose to those thresholds.

Another reason is related directly to the dynamics ofN̄N scattering, specifically to the presence of annihilation
processes. Annihilation occurs predominantly at short distances and yields a reduction of the magnitude of theS-
wave amplitudes. Because of that, higher partial waves start to become important at much lower energies as compared
to what one knows from theNN interaction [3]. Thus, already at rather moderate energiesa realistic description of
higher partial waves, in particular of theP- as well asD-waves, is required for a meaningful confrontation of the
computed amplitudes with scattering data.
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Figure 9: Total (σtot) and integrated elastic (σel), charge-exchange (σcex), and annihilation (σann) cross sections for ¯pp scattering. Results at
N3LO (black/solid line), N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO
(medium/cyan), and NLO (light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32]. Data are taken from Refs.
[62, 63, 64, 65] (σtot), [66, 67, 68] (σann), [69, 70, 71] (σcex), and [72, 73, 74] (σel).

In the present paper we extended our chiral EFTN̄N potential to N3LO. At that order the first LECs in the
D-waves appear, cf. Eq. (15), and can be used to improve substantially the reproduction of the corresponding partial-
wave amplitudes of thēNN PWA, cf. Figs. 6 and 7. Thus, it is now timely to perform also a calculation of observables
and compare those directly with measurements. Integrated cross sections are shown in Fig. 9. Results are provided
for the total reaction cross section, for the total annihilation cross section, and for the integrated elastic ( ¯pp→ p̄p)
and charge-exchange ( ¯pp → n̄n) cross sections. Similar to the presentation of the phase shifts before, we include
curves for the NLO (dotted lines), N2LO (dashed lines), and N3LO (solid lines) results and indicate the corresponding
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Figure 10: Differential cross sections, analyzing powers and spin correlation parametersDnn for p̄p elastic scattering. For notations, see Fig. 9.
The red/dash-double dotted line represents the result of the PWA [32]. Data are taken from Refs. [75, 67, 76, 73, 77, 78, 79, 80] (differential cross
sections), [81, 82, 83] (analyzing powers), and [84] (Dnn).
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p̄p → n̄n
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Figure 12: Differential cross sections, analyzing powers and spin correlation parametersDnn for charge-exchange scattering. For notations, see
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data forAon are for 546 and 656 MeV/c, respectively.
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n̄p cross sections

[102]. Usually the cross sections for exothermic reactionsbehave like 1/β so thatβσann is then practically constant,
cf. Fig. 14 forplab ≈ 100−300 MeV/c. However, the Coulomb attraction modifies that to a 1/β2 behavior for energies
very close to the threshold.
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Figure 15: Total (σtot) and integrated annihilation (σann) cross sections for ¯npscattering. For notations, see Fig. 9. Data are taken from Refs. [103,
104, 105].

Finally, for illustration we show our predictions for ¯np scattering, see Fig. 15. The ¯np system is a pure isospin
I = 1 state so that one can test theI = 1 component of theN̄N amplitude independently. Note that the PWA
results displayed in Fig. 15 include again partial-wave amplitudes from our N3LO interaction forJ ≥ 5. However, for
integrated cross sections the contributions of those higher partial waves is really very small, even atplab = 800 MeV/c.

6. Summary

In Ref. [38] a new generation ofNN potentials derived in the framework of chiral effective field theory was pre-
sented. In that work a new local regularization scheme was introduced and applied to the pion-exchange contributions
of theNN force. Furthermore, an alternative scheme for estimating the uncertainty was proposed that no longer de-
pends on a variation of the cutoffs. In the present paper we adopted their suggestions and applied them in a study of
the N̄N interaction. Specifically, āNN potential has been derived up to N3LO in the perturbative expansion, thereby
extending a previous work by our group that had considered the N̄N force up to N2LO [42]. Like before, the pertinent
low-energy constants have been fixed by a fit to the phase shifts and inelasticities provided by a recently published
phase-shift analysis of ¯ppscattering data [32].

We could show that an excellent reproduction of theN̄N amplitudes can be achieved at N3LO. Indeed, in many
aspects the quality of the description is comparable to thatone has found in case of theNN interaction at the same
order [38]. To be more specific, for theS-waves excellent agreement with the phase shifts and inelasticities of [32] has
been obtained up to laboratory energies of about 300 MeV, i.e. over the whole energy range considered. The same is
also the case for mostP-waves. Even many of theD-waves are described well up to 200 MeV or beyond. Because of
the overall quality in the reproduction of the individual partial waves there is also a nice agreement on the level ofN̄N
observables. Total and integrated elastic ( ¯pp→ p̄p) and charge-exchange ( ¯pp→ n̄n) cross sections agree well with
the PWA results up to the highest energy considered while differential observables (cross sections, analyzing powers,
etc.) are reproduced quantitatively up to 200-250 MeV. Furthermore, and equally important, in most of the considered
cases the achieved results agree with the ones based on the PWA within the estimated theoretical accuracy. Thus,
the scheme for quantifying the uncertainty suggested in Ref. [38] seems to work well and can be applied reliably to
the N̄N interaction as well. Finally, the low-energy representation of theN̄N amplitudes derived from chiral EFT
compares well with the constraints derived from the phenomenology of antiprotonic hydrogen.
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N̄N interaction in the final state
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Treatment of the final-state interaction

• Migdal-Watson: A ≈ N · A0 · Tp̄p

A0 ... elementary production/reaction amplitude, N ... normalization factor

works reliably only for interactions with a rather large scattering length,
e.g. 1S0 np→ a = -23.5 fm
A. Gasparyan et al., PRC 72 (2005) 034006

• DWBA: A = A0 + A0Gp̄pTp̄p

J/ψ
γ
p̄

p

~ =

J/ψ
γ
p̄

p

t +

J/ψ
γ
p̄

p

t ��
��
T

for a short-ranged production mechanism A0 is only weakly momentum (energy)
dependent

• Jost-function approach: A ≈ A0[1 + Gp̄pTp̄p] = A0ψ
(−)∗
q (0) = A0J−1(−q)

(may be valid for excess energies . 50 MeV)

MW used in the initial investigation: A. Sibirtsev et al., PRD 71 (2005) 054010
DWBA used in refined study: X.-W. Kang et al., PRD 91 (2015) 074003
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Dispersion relations (Muskhelishvili, Omnes)
PK+ Pp PΛ

P1 P2

P2P1− )2s=(
+A  =

NEGLECT
KΛ AND

KN  FSI

− )2t=(
− )2

PK P1

Pp PΛm =(2

Assume point-like production operator (large momentum transfer)
• is practically constant with respect to variations in m2

pΛ

Dispersion relation technique (A. Gasparyan et al., PRC 69 (2004) 034006)

A(s, t ,m2) = exp

[
1
π

∫ ∞
m2

0

δpΛ(m′2)

m′2 −m2 − i0
dm′2

]
× Φ(s, t ,m2)

model independent!!
⇒ theoretical uncertainty of extracted scattering length: ±0.3 fm
However, valid only for elastic scattering, single-channel systems
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State dependence of final-state interaction

Which p̄p partial waves can occur near threshold?

J/ψ (ψ′(3686)): IG(JPC) = 0−(1− −)

J/ψ → γp̄p: JPC is conserved
⇒ 1S0 (0− +), 3P0 (0+ +), ...

BESIII Collaboration, PRL 108 (2012) 112003: PWA→ 0− +

J/ψ → ωp̄p, φp̄p: IG, JPC is conserved
⇒ 11S0, 13P0, ...

J/ψ → π0p̄p: IG, JPC is conserved
⇒ 33S1, 33P1, ...

J/ψ → ηp̄p: IG, JPC is conserved
⇒ 13S1, 13P1, ...

B+ → K +p̄p, B → Dp̄p
Parity is not conserved→ more partial waves possible

(2I+1)(2S+1)LJ
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p̄p in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N2LO)

N̄N FSI in 3S1 state is relevant (bands represent cutoff variations!)
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p̄p in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N2LO)

N̄N FSI in 1S0 state is relevant (bands represent cutoff variations!)
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Migdal-Watson versus DWBA

Results for Jülich meson-exchange N̄N potential A(OBE):

− · − ... in Migdal-Watson approach (A. Sibirtsev (2005))
——- ... in DWBA (X.-W. Kang (2015); L.-Y. Dai (2018))
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⇒ Migdal-Watson approach should not be trusted!
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p̄p in final state

in principle, same p̄p FSI effects in the same final states

no large effect in J/ψ → ωp̄p⇒ no large effect in I = 0

caveat: p̄p could be produced predominantly in the 13P0 state in the
decay into ωp̄p (φp̄p) but in the 11S0 in case of γp̄p

no large effect in ψ′ → γp̄p
⇒ different isospin combinations must be relevant in J/ψ decay

p̄p FSI predicted by the meson-exchange models, but also the one
suggested by the p̄p PWA (χEFT potentials) does not reproduce the
J/ψ → γp̄p invariant mass spectrum

however: no p̄p scattering data near threshold
contribution of the (spin-singlet) 1S0 partial wave is small

⇒ possibly the interaction in the 1S0 is not well constrained

⇒ it is possible to readjust the 31S0 (I = 1) interaction so that the γp̄p
data are reproduced - without spoiling the p̄p results!
• X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003
• L.-Y. Dai, JH, U.-G. Meißner, PRD 98 (2018) 014005
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X (1835): J/ψ → γp̄p

L.-Y. Dai, JH, U.-G. Meißner, PRD 98 (2018) 014005
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FIG. 1. Real and imaginary parts of the 1S0 phase shift in
the isospin I = 1 channel. The bands represent the fits to the
PWA [28] (circles) at NLO, N2LO, and N3LO from Ref. [27].
The dashed and solid lines are refits at N2LO and N3LO,
respectively, utilized in the present work.

same FSI effects should arise. This concerns the reac-
tions J/ψ → ωp̄p [33] and J/ψ → φp̄p [34], and also
ψ(2S) → γp̄p [8]. In none of these, enhancements of a
comparable magnitude were observed in the experiments.
So far, a few suggestions for a way out of this dilemma
have been made [14, 23, 26]. In our own work the empha-
sis was always on the isospin dependence. Already in our
initial studies [21, 22], still based on the Migdal-Watson
approximation and on the Jülich meson-exchange N̄N
potential [35, 36], it was the isospin I = 1 amplitude
that produced the large enhancement. Then there is no
conflict with the rather moderate enhancements observed
in the J/ψ → ωp̄p and J/ψ → φp̄p channels, because in
those cases the produced p̄p system has to be in I = 0 (as-
suming that isospin is conserved in this purely hadronic
decay).
Indeed, in the decays J/ψ → γp̄p and ψ(2S) → γp̄p

isospin is not conserved and, therefore, in principle, one
can have any combination of the I = 0 and I = 1 am-
plitudes. This freedom was exploited in a recent and
more refined study of J/ψ decays by our group [23]. In
that work we not only treated the FSI effects within
a DWBA approach, but we also employed an N̄N po-
tential that was derived within the framework of chi-
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FIG. 2. J/ψ → γp̄p results with refitted I = 1 1S0 amplitude,
analoguous to Ref. [23]. Data are from Ref. [8] (BESIII), [7]
(BES), and [32] (CLEO). Note that the latter two are scaled
to those by the BESIII Collaboration by eye.

ral effective field theory up to N2LO [29]. Utilizing
the “standard” hadronic combination for the p̄p ampli-
tude, namely T = Tp̄p = (T I=0 + T I=1)/2, for J/ψ
decay and one with a predominant I = 0 component,
T = (0.9T 0 + 0.1T 1) for ψ(2S) decay allowed us to
achieve a consistent description of the γp̄p spectrum for
both decays [23].

Nonetheless, it should be said that we had to depart
slightly from the I = 1 1S0 N̄N amplitude as determined
in the PWA of Zhou and Timmermans [28]. However, al-
ready a rather modest modification of the interaction in
the I = 1 channel – subject to the constraint that the
corresponding partial-wave cross sections for p̄p → p̄p
and p̄p → n̄n remain practically unchanged at low ener-
gies – allowed us to reproduce the events distribution of
the radiative J/ψ decay, and consistently all other decays
[23].

In the present work we repeat this exercise, employing
now the new N̄N interaction [27]. First of all, we want
to see whether the same scenario holds for the improved
N̄N potential that is based on a different regularization
scheme and that is now calculated up to N3LO. In ad-
dition we have to establish the J/ψ → γp̄p amplitude in
the I = 0 channel that enters into the calculation of the
2-step process, see Eq. (2). Results for the N̄N sector,
i.e. the I = 1 1S0 amplitude, are shown in Fig. 1. The
parameters of the fit are summarized in Table I. Corre-
sponding results for the p̄p invariant mass spectrum of
the reaction J/ψ → γp̄p are displayed in Fig. 2. It is
reassuring to see that the results are basically the same
as those reported in Ref. [23] for the chiral N2LO in-
teraction. The presented results are for the combination
T = (0.4T 0+0.6T 1) that yields the lowest χ2 value in the
fit. Note, however, that those for weights of the isospin
amplitudes differing by, say, ±0.1 are very similar, even
on a quantitative level.

Interestingly, the modified potential in Ref. [23] gener-

refitted I = 1 1S0: — N3LO - - - N2LO
reproduces the p̄p data with same quality as the original χEFT potentials

• BESIII (M. Ablikim et al.), PRL 117 (2016) 042002
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Evidence for N̄N bound states?

N2LO [1] N3LO [2] El-Bennich [3] Entem [4] Milstein [5]
11S0 - - -4.8-i 26 - 22-i 33
31S0 -37-i 47∗ -51-i 41∗ - - -

(-2.1-i 94)†∗
13S1 +(5.6 · · · 7.7)− i (49.2 · · · 60.5) - - - -
11P1 - - 1877±i 13 - -
13P0 −(3.7 · · · 0.2)− i (22.0 · · · 26.4) ? 1876±i 5 1895±i 17 -
33P0 - - 1871±i 11 - -
13P1 - - 1872±i 10 - -
33P1 - - -4.5-i 9 - -

Mp + Mp̄ = 1876.574 MeV, EB , MR in MeV

[1] Xian-Wei Kang et al., JHEP 02 (2014) 113 ∗needed for J/ψ → γp̄p
[2] Ling-Yun Dai, JHEP 07 (2017) 078 (†N2LO) ∗needed for J/ψ → γp̄p
[3] B. El-Bennich et al., PRC 79 (2009) 054001
[4] D.R. Entem & F. Fernández, PRC 73 (2006) 045214
[5] A.I. Milstein & S.G. Salnikov, NPA 966 (2017) 54

BES 2005; BESIII 2011,2016: X(1835) (JPC = 0−+, I = 0)

seen in J/ψ → γπ+π−η′: MR = 1836.5± 3+5.6
−2.1 MeV, Γ = 190± 9+38

−36 MeV

evidence (?) in J/ψ → γp̄p: MR = 1832+19
−5

+18
−17 MeV, Γ< 76 MeV (90 % C.L.)
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X (1835): J/ψ → γπ+π−η′

L.-Y. Dai, JH, U.-G. Meißner, PRD 98 (2018) 014005

AJ/ψ→γπ+π−η′ = A0
J/ψ→γπ+π−η′ + AJ/ψ→γN̄NG0

N̄NVN̄N→π+π−η′

VN̄N→π+π−η′ ∝ C̃ + C p2
N̄N constrained from BR(p̄p → π+π−η′)

A0
J/ψ→γπ+π−η′ ∝ C̃η′ + Cη′ Qπ+π−η′ smooth background: C̃η′ , Cη′ ... free parameters

J/ψ → γπ+π−η′

6

J/ψ → γη′π+π−. This term has to account for all
other contributions to J/ψ → γη′π+π−, besides the one
with an intermediate γN̄N state. Thus, it can have a
relative phase as compared to the contribution from the
N̄N loop, i.e. the corresponding C’s can be complex
valued. However, it turns out that optimal results are
already achieved for real values of C̃J/ψ→γη′ππ and
CJ/ψ→γη′ππ. In the fit we consider data in the range
1800 MeV ≤ E ≤ 1950 MeV, i.e. in a region that en-
compasses more or less symmetrically the N̄N threshold.
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FIG. 3. The η′π+π− invariant mass spectrum in the reac-
tion J/ψ → γη′π+π−. Results for the contribution from the
J/ψ → γN̄N → γη′π+π− transition (dotted line) and the
background term (dashed line) are shown, together with the
full results (solid line). The N3LO N̄N potential [27] is em-
ployed. Data are from the BESIII Collaboration [10]. The
horizontal line indicates the p̄p threshold.
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FIG. 4. Results for J/ψ → γη′π+π− including background
term and N̄N → η′π+π− transition amplitude for the N2LO
(dashed line) and N3LO (solid line) N̄N interactions. Data
are from the BESIII Collaboration [10]. The horizontal line
indicates the p̄p threshold.

Our results for the reaction J/ψ → γη′π+π− are pre-

sented in Figs. 3 and 4. They are based on the N2LO and
N3LO EFT N̄N interactions with the cutoff R = 0.9 fm
(Λ = 438 MeV), cf. Ref. [27] for details. Exploratory
calculations for the other cutoffs considered in Ref. [27]
turned out to be very similar. Like for N̄N scattering
itself, much of the cutoff dependence is absorbed by the
contact terms (C̃ν and Cν in Eqs. (5) and (6)) that are
fitted to the data so that the variation of the results for
energies of, say, ±50 MeV around the N̄N threshold is
rather small. For consistency the momentum-space regu-
lator function as given in Eq. (3.1) (right side) in Ref. [27]
is also attached to the transition potentials in Eqs. (5)
and (6), i.e. to all quantities that depend on the N̄N
momentum q.

In Fig. 3 the full results for the η′π+π− invariant mass
spectrum (solid line) are shown, together with the in-
dividual contributions from the J/ψ → γN̄N → γη′ππ
transition (dotted line) and the background term (dashed
line), exemplary for our N3LO interaction. By construc-
tion the background is a smooth function of the η′π+π−

invariant mass, whereas the contribution from the N̄N
loop exhibits a pronounced cusp-like structure at the N̄N
threshold. The (square of the) latter amplitude is roughly
a factor 5 smaller. However, there is a sizable interfer-
ence between the two amplitudes so that the coherent
sum reflects the opening of (coupling to) the N̄N chan-
nel and leads to results for the invariant mass spectrum
that are very close to the measurements of the BESIII
Collaboration.

In Fig. 4 we present the complete results for the N2LO
and N3LO interactions, on a scale similar to that in the
BESIII publication [10], cf. the inserts in Figs. 3 and 4 of
that reference. First we note that the η′π+π− invariant
mass spectrum based on the two N̄N interactions is very
similar around the N̄N threshold. It is also very similar
to the fit within the first model considered in Ref. [10] (cf.
the corresponding Fig. 3). That model includes explicitly
a X(1835) resonance and simulates the effect of the N̄N
channel via a Flatté formula [40]. Obviously, in our cal-
culation the data can be described with the same quality,
but without such a X(1835) resonance. The more elab-
orated treatment of the coupling to the N̄N channel via
Eq. (8) with the explicit inclusion of the N̄N interaction
itself is already sufficient to generate an invariant-mass
dependence in line with the data.

For completeness, let us mention that a second reso-
nance has been introduced in Ref. [10] in the invariant-
mass region covered by our study, namely an X(1920),
in order to reproduce a possible enhancement at the cor-
responding invariant mass suggested by two data points,
cf. Fig. 4. Furthermore, a second model has been consid-
ered in Ref. [10] where instead of the coupling to the N̄N
channel an additional and rather narrow resonance was
included, the X(1870). In that scenario a slightly better
description of the data very close to the N̄N threshold
could be achieved.

Now the key question is, of course, are those structures
seen in the experiment a signal for a N̄N bound state?

— N3LO - - - N2LO

• BESIII (M. Ablikim et al.), PRL 117 (2016) 042002
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What about a genuine resonance?

A genuine X (1835) resonance would contribute to the N̄N interaction too!

✉ ✉
N̄ N

N̄ N

π ✉
N̄ N

N̄ N

+ · · · +

✉
✉

N̄ N

N̄ N

X

V N̄N ⇒ V N̄N + γN̄N
0

1
EN̄ + EN −m0

X

γN̄N
0

m0
X ... bare mass of a possible X (1835) resonance

γN̄N
0 ... bare N̄NX vertex

one needs to determine m0
X and the parameters of the bare N̄NX vertex in a combined

fit to N̄N data and the J/ψ → γp̄p invariant mass spectrum

is done by us for
e+e− → Λ+

c Λ̄−c (X (4630)) → L.-Y.Dai, JH, U.-G. Meißner, PRD 96 (2017) 116001

p̄p → D̄D (ψ(3770)) → JH, G. Krein, PRD 91 (2015) 114022

essential difference: resonances are above threshold!
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The reaction e+e− → p̄p: experimental situation

17

TABLE V: The values of the different efficiency corrections
δi for pp̄ invariant mass 1.9, 3.0, and 4.5 GeV/c2.

effect δi(1.9),% δi(3),% δi(4.5),%

χ2
p < 30 −0.5± 0.1 −0.9± 0.1 −1.5± 0.2
χ2
K > 30 0.0 ± 0.4 0.0± 0.4 0.0± 0.4

track overlap 0.0 ± 1.5 – –
nuclear interaction 0.8 ± 0.4 1.1± 0.4 1.0± 0.4
track reconstruction 0.0 ± 0.5 0.0± 0.5 0.0± 0.5
PID −1.9± 2.0 −1.9± 2.0 −1.9± 2.0
photon inefficiency −1.9± 0.1 −1.7± 0.1 −1.7± 0.1
trigger and filters −0.7± 0.6 −0.1± 0.5 −0.1± 0.5

total −4.2± 2.6 −3.5± 2.2 −4.2± 2.2

VII. THE e+e− → pp̄ CROSS SECTION AND
THE PROTON FORM FACTOR

The cross section for e+e− → pp̄ is calculated from the
pp̄ mass spectrum using the expression

σpp̄(Mpp̄) =
(dN/dMpp̄)corr
εRdL/dMpp̄

, (10)

where (dN/dMpp̄)corr is the mass spectrum corrected for
resolution effects, dL/dMpp̄ is the ISR differential lumi-
nosity, ε(Mpp̄) is the detection efficiency as a function of
mass, and R is a radiative correction factor accounting
for the Born mass spectrum distortion due to emission of
extra photons by the initial electron and positron. The
ISR luminosity is calculated using the total integrated lu-
minosity L and the integral over cos θ∗γ of the probability
density function for ISR photon emission (Eq. (2)):

dL

dMpp̄
=

α

πx

(
(2− 2x+ x2) log

1 + B

1− B
− x2C

)
2Mpp̄

s
L.

(11)
Here B = cos θ∗0 , and θ∗0 determines the range of po-
lar angles for the ISR photon in the e+e− c.m. frame:
θ∗0 < θ∗γ < 180◦ − θ∗0 . In our case θ∗0 = 20◦, since
we determine detector efficiency using simulation with
20◦ < θ∗γ < 160◦. The values of ISR luminosity inte-
grated over the Mpp̄ intervals are listed in Table VI.
The radiative correction factor R is determined from

MC simulation at the generator level, with no detector
simulation. The pp̄ mass spectrum is generated using
only the pure Born amplitude for the process e+e− →
pp̄γ, and then using a model with higher-order radiative
corrections included by means of the structure function
method [18]. The radiative correction factor, evaluated
as the ratio of the second spectrum to the first, varies
from 1.001 at pp̄ threshold to 1.02 at Mpp̄ = 4.5 GeV/c2.
The value of R depends on the requirement on the

invariant mass of the pp̄γ system. The value of R ob-
tained in our case corresponds to the requirementMpp̄γ >
8 GeV/c2 imposed in the simulation. The theoretical un-
certainty on the radiative correction calculation by the
structure function method does not exceed 1% [18]. The
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FIG. 15: The e+e− → pp̄ cross section measured in this anal-
ysis and in other e+e− experiments: FENICE[6], DM2[5],
DM1[4], ADONE73[7], BES[8], CLEO[9], NU[10]. The con-
tributions of J/ψ → pp̄ and ψ(2S) → pp̄ decays to the BABAR
measurement have been subtracted.
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FIG. 16: The e+e− → pp̄ cross section near threshold
measured in this analysis and in other e+e− experiments:
FENICE[6], DM2[5], DM1[4], ADONE73[7], BES[8].

calculated radiative correction factor does not take into
account vacuum polarization; the contribution of the lat-
ter is included in the measured cross section.
The resolution-corrected mass spectrum is obtained by

unfolding the mass resolution from the measured mass
spectrum. Using MC simulation, a migration matrix,
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FIG. 17: The proton effective form factor measured in this
analysis, in other e+e− experiments, and in pp̄ experiments:
FENICE[6], DM2[5], DM1[4], BES[8], CLEO[9], NU[10],
PS170[11], E835[13], E760[12]: (a) for the mass interval from
pp̄ threshold to 3.01 GeV/c2, and (b) for pp̄ masses from 2.58
to 4.50 GeV/c2.

radiative corrections (1%). A comparison of this result
with the available e+e− data is shown in Fig. 15, and the
behavior in the near-threshold region is shown in Fig. 16.

The e+e− → pp̄ cross section is a function of two
form factors, but due to the poor determination of the
|GE/GM | ratio, they cannot be extracted from the data
simultaneously with reasonable accuracy. Therefore, the
effective form factor Fp(Mpp̄) is introduced (Eq. (4)),
which is proportional to the square root of the measured
cross section. This definition of the effective form factor
permits comparison of our measurement with measure-
ments from other experiments, most of which were made
under the assumption |GE | = |GM |. The calculated ef-
fective form factor is shown in Fig. 17 (linear scale) and
Fig. 18 (logarithmic scale), while numerical values are
listed in Table VI. These form factor values are obtained
as averages over mass-interval width. The four mea-
surements from PS170 [11] with lowest mass are located
within the first mass interval of Table VI. Consequently,
for the mass region near threshold, where the results from
PS170 indicate that the form factor changes rapidly with
mass, we calculate the cross section and effective form
factor using a smaller mass-interval size. These results
are listed in Table VII, and shown in Fig. 19. From
Figs. 17, 18, and 19, it is evident that the BABAR effective
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FIG. 18: The proton effective form factor measured in this
analysis, in other e+e− experiments, and in pp̄ experiments,
shown on a logarithmic scale: FENICE[6], DM2[5], DM1[4],
BES[8], CLEO[9], NU[10], PS170[11], E835[13], E760[12].
The curve corresponds to the QCD-motivated fit described
in the text.

form factor results are in reasonable agreement with, and
in general more precise than, those from previous exper-
iments. However, in the region 1.88–2.15 GeV/c2, the
BABAR results are systematically above those from the
other experiments.

The form factor has a complex mass dependence. The
significant increase in the form factor as the pp̄ thresh-
old is approached may be due to final-state interac-
tion between the proton and antiproton [29–32]. The
rapid decreases of the form factor and cross section near
2.2 GeV/c2, 2.55 GeV/c2, and 3 GeV/c2 have not been
discussed in the literature. The form-factor mass depen-
dence below 3 GeV/c2 is not described satisfactorily by
existing models (see, for example, Refs. [33–36]). The
dashed curve in Fig. 18 corresponds to a fit of the asymp-
totic QCD dependence of the proton form factor [37],
Fpp̄ ∼ α2

s(M
2
pp̄)/M

4
pp̄ ∼ D/(M4

pp̄ log
2(M2

pp̄/Λ
2)), to the

existing data with Mpp̄ > 3 GeV/c2. Here Λ = 0.3 GeV
and D is a free fit parameter. All the data above
3 GeV/c2 except the two points from Ref. [10] marked
“NU” are well described by this function. Adding the
points from Ref. [10] changes the fit χ2/ν from 9/16 to
41/18, where ν is the number of degrees of freedom. The
measurement of Ref. [10] indicates that the form factor
atMpp̄ ≈ 4 GeV/c2 decreases more slowly than predicted
by QCD.
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Figure 4.13: Top left: world data on e+e− → pp̄ cross section. Top right: the effective
proton timelike form factor. Bottom left: world data on R = |GE/GM |. Bottom right:
effective form factor after subtracting the fitted line in the top right panel. The data
are from BESIII [96, 97], BaBar [94], CMD3 [98], BES [99], FENICE [100], E760 [101],
E835 [102], PS170 [95] and DM2 [103].

BaBar: J.P. Lees et al., PRD 87 (2013) 092005, BESIII: M. Ablikim et al., PRL 124 (2020) 042001

theory: Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, PRL 128 (2022) 052002
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The reaction e+e− → p̄p: formulae

σe+e−→ p̄p =
4πα2β

3s
Cp(s)

[
|GM (s)|2 +

2M2
p

s
|GE (s)|2

]

|Geff(s)| =

√√√√√ σe+e−→ p̄p(s)

4πα2β
3s Cp(s)

[
1 +

2M2
p

s

]
√

s = Mp̄p = q2, β = kp/ke ≈ 2 kp/
√

s

Sommerfeld-Gamov factor: Cp(s) = y/(1− exp(−y)); y = πα
√

s/(2 kp) (for p̄p, etc.)

dσ
dΩ

=
α2β

4s
Cp(s) |GM (s)|2

[
(1 + cos2θ) +

4M2
p

s

∣∣∣∣GE (s)

GM (s)

∣∣∣∣2 sin2θ

]

Py =
2Mp sin 2θ√

sD
ImG∗E GM = −2Mp sin 2θ√

sD
|GE (s)| |GM (s)| sin Φ; Φ = arg(

GE

GM
)

Cxx , Cyy , Czz , Cxz , Czy ... involve other combinations of GE (s), GM (s)

D = sin2
θ

4M2
p

s
|GE (s)|2 + (1 + cos2

θ)|GM (s)|2

• Py , Cxx , etc. ... difficult to measure for p̄p
easier for ΛΛ, etc. (self-analyzing weak decay of hyperons)
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e+e− → p̄p in DWBA

one-photon exchange⇒ N̄N, e+e− are in the 3S1, 3D1 partial waves

e+ p̄

e− p

✫✪
✬✩
M =

e+ p̄

e− p

t ②γ
+

e+ p̄

e− p

t ②γ

✫✪
✬✩
T N̄N

ML,L′ ∝ f e+e−
L · f p̄p

L′

f e+e−
L=0 =

[
1 + me√

s

]
; f e+e−

L=2 =
[
1− 2me√

s

]
f p̄p
L=0 =

[
GM +

Mp√
s
GE

]
; f p̄p

L=2 =
[
GM − 2Mp√

s
GE

]
f p̄p
L=2(kp = 0) = 0 → GM (kp = 0)=GE (kp = 0)

f p̄p
L′ (k ; Ek ) = f p̄p;0

L′ (k) +
∑

L

∫ ∞
0

dpp2

(2π)3
f p̄p;0
L (p)

1
2Ek − 2Ep + i0+

T p̄p
LL′ (p, k ; Ek )

f p̄p;0
L′ ... bare vertex with bare form factors G0

M and G0
E

• assume G0
M ≡ G0

E = const. ... only single parameter (overall normalization)
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Results for e+e− ↔ p̄p

J.H., X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N2LO)
(bands represent cutoff variations!)
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—- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]

PS170: G. Bardin et al., NPB 411 (1994) 3

(σp̄p→e+e− ∝
k2
e

k2
p
σe+e−→p̄p ; but there is a systematic overall difference of≈ 1.47)

Note: σe+e−→p̄p 6= 0 at threshold because of attractive Coulomb interaction in p̄p!
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Results for e+e− → p̄p
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Results for e+e− → n̄n

J.H., C. Hanhart, X.-W. Kang, U.-G. Meißner, PRD 92 (2015) 054032 (N2LO)

(bands represent cutoff variations!)
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FENICE: A. Antonelli et al., NPB 517 (1998) 3
SND 2014: M.M. Achasov et al., PRD 90 (2014) 112007
SND 2017: K.I. Belobodorov et al., EPJ WoC 199 (2019) 02026
BESIII 2019: preliminary !!
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Summary I

N̄N interaction up to N3LO in chiral effective field theory

new local regularization scheme is used for pion-exchange contributions

new uncertainty estimate suggested by Epelbaum, Krebs, Meißner

excellent description of N̄N amplitudes is achieved

nice agreement with p̄p observables for Tlab ≤ 250 MeV is achieved

predictions are made for low energies (Tlab ≤ 5.3 MeV):
• low-energy annihilation cross section
• level shifts of antiprotonic atoms

⇒ approach works not only for NN but also very well for N̄N
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Summary II

Our analysis does not exclude that something exotic is seen in J/ψ → γp̄p.
However, it strongly suggests that FSI effects are a plausible and likely
explanation for the enhancement in the p̄p invariant mass distribution.
This conjecture explains also the energy dependence of J/ψ → ωp̄p,
ψ(3686)→ γp̄p, e+e− → p̄p, etc.

The particularly strong enhancement seen in J/ψ → γp̄p could be indeed an
evidence for a p̄p bound state (baryonium):
In our analysis it is in the isospin I = 1 1S0 state.

However, it is not an unambiguous signal for a bound state
near-threshold bound state –> strong FSI effects
strong FSI effects –≯ near-threshold bound state

Reliable conclusions from the p̄p invariant mass spectrum on the sub-threshold
region are difficult to draw. One cannot avoid sizable variations/uncertainties in
such an extrapolation.
Alternative: p̄p annihilation into selective four-meson channels, e.g.
p̄p → π0p̄pbound → π0π−π+η′

Differences in the distributions for J/ψ → γp̄p, J/ψ → ωp̄p, and ψ′ → γp̄p have
to be expected. They are simply sign of different reaction mechanisms.

Johann Haidenbauer Final state interaction



Backup slides

Johann Haidenbauer Final state interaction



Annihilation potential

experimental information:
• annihilation occurs dominantly into 4 to 6 pions (two-body channels like
p̄p → π+π−, ρ±π∓ etc. contribute in the order of ≈ 1%)
• thresholds: for 5 pions: ≈ 700 MeV for N̄N: 1878 MeV
• produced pions have large momenta→ annihilation process depends very little
on energy
• annihilation is a statistical process: properties of the individual particles (mass,
quantum numbers) do not matter
phenomenlogical models: bulk properties of annihilation can be described rather
well by simple energy-independent optical potentials
range associated with annihilation is around 1 fm or less
→ short-distance physics

⇒ describe annihilation in the same way as the short-distance physics in V N̄N
el ,

i.e. by contact terms (LECs)
⇒ describe annihilation by a few effective (two-body) annihilation channels

(unitarity is preserved!)

V N̄N = V N̄N
el + V N̄N

ann;eff ; V N̄N
ann;eff =

∑
X

V N̄N→X G0
X V X→N̄N

V N̄N→X (pN̄N , pX ) ≈ pL
N̄N (a + b p2

N̄N + ...); pX ≈ const.
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Contributions of Vcont for N̄N up to N3LO

V N̄N
el

V L=0 = C̃α + Cα(p2 + p′2) + D1
αp2p′2 + D2

α(p4 + p′4)

V L=1 = Cβ p p′ + Dβ p p′(p2 + p′2)

V L=2 = Dγ p2p′2

C̃i ... LO LECs [4], Ci ... NLO LECs [+14], Di ... N3LO LECs [+30], p = |p |; p′ = |p ′|

V N̄N
ann;eff

V L=0
ann = −i (C̃a

α + Ca
αp2 + Da

αp4) (C̃a
α + Ca

αp′2 + Da
αp′4)

V L=1
ann = −i (Ca

βp + Da
βp3) (Ca

βp′ + Da
βp′3)

V L=2
ann = −i (Da

γ )2p2p′2

V L=3
ann = −i (Da

δ)2p3p′3

α ... 1S0 and 3S1
β ... 3P0, 1P1, and 3P1
γ ... 1D2, 3D2 and 3D3
δ ... 1F3, 3F3 and 3F4

• unitarity condition: higher powers than what follows from Weinberg power counting appear!

• same number of contact terms (LECs)
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effective χ square

Fit to phase shifts and inelasticity parameters in the isospin basis

χ̃2 ≈ |SLL′ − SPWA
LL′ |2/∆2 ... SLL′ are S-matrix elements

(no uncertainties for the PWA given→ ∆2 ... simple scaling parameter)

R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm

Tlab ≤ 25 MeV 0.003 0.004 0.004 0.019 0.036

Tlab ≤ 100 MeV 0.023 0.025 0.036 0.090 0.176

Tlab ≤ 200 MeV 0.106 0.115 0.177 0.312 0.626

Tlab ≤ 300 MeV 2.012 2.171 3.383 5.531 9.479

• minimum around R = 0.8 ∼ 0.9 fm (R = 0.9 ∼ 1.0 fm in the NN case)

Calculation of observables is done in particle basis:
• Coulomb interaction in the p̄p channel is included
• the physical masses of p and n are used
n̄n channels opens at plab = 98.7 MeV/c (Tlab = 5.18 MeV/c)
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N̄N partial-wave cross sections [in mb]

p̄p → p̄p p̄p → n̄n
plab (MeV/c) 200 400 600 800 200 400 600 800
Tlab (MeV) 21.1 81.7 175 295 21.1 81.7 175 295

1S0 N3LO 15.9 8.0 4.1 2.0 0.7 0.1
PWA 15.7 7.9 4.1 2.1 0.7 0.1

3S1 N3LO 66.6 25.9 13.1 8.0 2.9 0.9 0.5 0.3
PWA 66.1 26.0 13.2 8.8 3.0 1.0 0.5 0.2

3P0 N3LO 4.9 5.4 5.1 3.6 1.5 0.8 0.1
PWA 4.9 5.4 5.0 3.5 1.5 0.8 0.1

1P1 N3LO 1.0 2.5 4.4 5.6 0.8 0.1
PWA 0.9 2.5 4.5 5.6 0.8 0.1

3P1 N3LO 1.8 5.0 4.1 3.6 5.1 3.0 0.2 0.1
PWA 1.8 4.9 4.0 3.5 4.9 2.9 0.2 0.1

3P2 N3LO 7.0 17.1 14.1 9.9 1.0 1.5 0.4 0.1
PWA 7.0 17.0 13.9 9.6 0.9 1.4 0.4 0.1

(N3LO with R = 0.9 fm)
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p̄p annihilation cross section

experimental values, with the only exception being the level shift in the3P0 partial wave.

Table 4: Hadronic shifts and broadenings in hyperfine statesof p̄H for the chiral potentials withR= 0.9 fm. For comparison N2LO predictions of
our previous chiral potential are included, based on the cutoff combination (Λ, Λ̃) = (450,500) MeV [42]. The experimental information is taken
from Refs. [91, 93, 92, 94].

NLO N2LO N3LO N2LO [42] Experiment

E1S0
(eV) −448 −446 −443 −436 −440(75) [92]

−740(150) [91]

Γ1S0
(eV) 1155 1183 1171 1174 1200(250) [92]

1600(400) [91]

E3S1
(eV) −742 −766 −770 −756 −785(35) [92]

−850(42) [93]

Γ3S1
(eV) 1106 1136 1161 1120 940(80) [92]

770(150) [93]

E3P0
(meV) 17 12 8 16 139(28) [94]

Γ3P0
(meV) 194 195 188 169 120(25) [94]

E1S (eV) −670 −688 −690 −676 −721(14) [92]

Γ1S (eV) 1118 1148 1164 1134 1097(42) [92]

E2P (meV) 1.3 2.8 4.7 2.3 15(20) [94]

Γ2P (meV) 36.2 37.4 37.9 27 38.0(2.8) [94]
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Figure 14:p̄p annihilation cross section multiplied by the velocityβ of the incoming ¯p. For notations, see Fig. 9. The results of the PWA [32] are
indicated by circles. Data are taken from [98, 99, 100, 101].

There are measurements of the ¯pp annihilation cross section at very low energy [98, 99, 100, 101]. Also those
experiments were not taken into account in the PWA [32]. We present our predictions for this observable in Fig. 14,
where the annihilation cross section multiplied by the velocity β of the incoming ¯p is shown. Results based on the
amplitudes of the PWA are also included (filled circles). An interesting aspects of those data is that one can see the
anomalous behavior of the reaction cross section near threshold due to the presence of the attractive Coulomb force

23

β =
vp̄
c

• anomalous threshold behavior due to attractive Coulomb interaction
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Hadronic level shifts in hyperfine states of p̄H

Deser-Trueman formula:

∆ES + i
ΓS

2
= − 4

Mpr3
B

asc
S

(
1− asc

S

rB
β

)

∆EP + i
ΓP

2
= − 3

8Mpr5
B

asc
P

rB ... Bohr radius ... 57.6 fm; β = 2(1−Ψ(1)) ≈ 3.1544
asc ... Coulomb-distorted p̄p scattering length

Carbonell, Richard, Wycech, ZPA 343 (1992) 343:
works well once Coulomb and p-n mass difference is taken into account

NOTE:

different sign conventions for scattering lengths in N̄N and K̄ N!

∆E < 0⇔ repulsive shift
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Hadronic level shifts in hyperfine states of p̄H

NLO N2LO N3LO N2LO∗ Experiment

E1S0
(eV) −448 −446 −443 −436 −440(75) [1]

−740(150) [2]
Γ1S0

(eV) 1155 1183 1171 1174 1200(250) [1]

1600(400) [2]
E3S1

(eV) −742 −766 −770 −756 −785(35) [1]

−850(42) [3]
Γ3S1

(eV) 1106 1136 1161 1120 940(80) [1]

770(150) [3]
E3P0

(meV) 17 12 8 16 139(28) [4]

Γ3P0
(meV) 194 195 188 169 120(25) [4]

E1S (eV) −670 −688 −690 −676 −721(14) [1]
Γ1S (eV) 1118 1148 1164 1134 1097(42) [1]

E2P (meV) 1.3 2.8 4.7 2.3 15(20) [4]
Γ2P (meV) 36.2 37.4 37.9 27 38.0(2.8) [4]

[1] Augsburger et al., NPA 658 (1999) 149; [2] Ziegler et al., PLB 206 (1988) 151;
[3] Heitlinger et al., ZPA 342 (1992) 359; [4] Gotta et al., NPA 660 (1999) 283

∗ Xian-Wei Kang et al., JHEP 02 (2014) 113
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p̄p in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N2LO)

N̄N FSI in additional channels (bands represent cutoff variations!)
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