Final state interaction of antiproton-proton in hadron decays

Johann Haidenbauer

Forschungszentrum Jülich, Germany

Jülich, April 7, 2022

(in collaboration with Ling-Yun Dai, Xian-Wei Kang, Ulf-G. Meißner)

ヘロト ヘヨト ヘヨト

Johann Haidenbauer Final state interaction

Introduction

- 2 The antinucleon-nucleon interaction
- 3 Antinucleon-nucleon interaction in the final state
- 4 Electromagnetic form factors of the nucleon

▲ □ ▶ ▲ □ ▶ ▲

p scattering measurements at LEAR

Measurement	Incoming p momentum (MeV/c)	Experiment
integrated cross sections		
$\sigma_{tot}(\bar{\rho}\rho)$	222-599 (74 momenta)	PS172
	181,219,239,261,287,505,590	PS173
$\sigma_{ann}(\overline{\rho}p)$	177-588 (53 momenta)	PS173
	38-174 (14 momenta)	PS201
p elastic scattering		
$\rho = \operatorname{Re} f(0) / \operatorname{Im} f(0)$	233,272,550,757,1077	PS172
	181,219,239,261,287,505,590	PS173
$d\sigma/d\Omega$	679-1550 (13 momenta)	PS172
	181,287,505,590	PS173
	439,544,697	PS198
A _{0n}	497-1550 (15 momenta)	PS172
	439,544,697	PS173
D _{0n0n}	679-1501 (10 momenta)	PS172
p charge exchange		
$d\sigma/d\Omega$	181-595 (several momenta)	PS173
	546,656,693,767,875,1083,1186,1287	PS199
	601.5,1202	PS206
A _{0n}	546,656,767,875,979,1083,1186,1287	PS199
D _{0n0n}	546,875	PS199
K _{n00n}	875	PS199

æ

イロト イポト イヨト イヨト

Revival of antinucleon-nucleon physics

• Near-threshold enhancement in the $\bar{p}p$ invariant-mass spectrum: $J/\psi \rightarrow \gamma \bar{p}p \rightarrow BES$ collaboration (2003, 2012, 2016) $B^+ \rightarrow K^+ \bar{p}p \rightarrow BaBar$ collaboration (2005) $e^+e^- \rightarrow \bar{p}p \rightarrow FENICE$ (1998), BaBar (2006,13), BESIII (2019) ($\bar{p}p \rightarrow e^+e^- \rightarrow PS170$ (1994))

 \Rightarrow new resonances, $\bar{p}p$ bound states, exotic glueball states ?

- Facility for Antiproton and Ion Research (FAIR)
 - PANDA Project

Study of the interactions between antiprotons and fixed target protons and nuclei in the momentum range of 1.5-15 GeV/c using the high energy storage ring HESR

PAX Collaboration

experiments with a polarized antiproton beam transversity distribution of the valence quarks in the proton $\bar{N}N$ double-spin observables

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

N partial-wave analysis

- R. Timmermans et al., PRC 50 (1994) 48
 - use a meson-exchange potential for the long-range part
 - apply a strong absorption at short distances (boundary condition) in each individual partial wave (\approx 1.2 fm)
 - 30 parameters, fitted to a selection of N
 N data (3646!)
 - However, resulting amplitudes are not explicitly given: no proper assessment of the uncertainties (statistical errors) phase-shift parameters for the ¹S₀ and ¹P₁ partial waves are not pinned down accurately
- D. Zhou and R. Timmermans, PRC 86 (2012) 044003
 - use now potential where the long-range part is fixed from chiral EFT (N²LO)
 - somewhat larger number of N
 N data (3749!)
 - now, resulting amplitudes and phase shifts are given!
 - lowest momentum: $p_{lab} = 100 \text{ MeV/c} (T_{lab} = 5.3 \text{ MeV})$
 - highest total angular momentum: J = 4

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

N PWA: $\overline{\rho}\rho \rightarrow \overline{\rho}\rho$

Johann Haidenbauer Final state interaction

$N PWA \bar{p}p \rightarrow \bar{n}n$

Johann Haidenbauer Final

Final state interaction

The *NN* interaction

Traditional approach: meson-exchange

I) $V_{el}^{\bar{N}N}$... derived from an *NN* potential via G-parity (Charge conjugation plus 180° rotation around the *y* axis in isospin space) \Rightarrow

$$V^{NN}(\pi, \omega) = -V^{NN}(\pi, \omega) \quad \text{odd } \mathbf{G} - \text{parity}$$
$$V^{\bar{N}N}(\sigma, \rho) = +V^{NN}(\sigma, \rho) \quad \text{even } \mathbf{G} - \text{parity}$$

II) $V_{ann}^{\bar{N}N}$ employ a phenomenological optical potential, e.g.

$$V_{opt}(\mathbf{r}) = (U_0 + iW_0) e^{-\mathbf{r}^2/(2a^2)}$$

with parameters U_0 , W_0 , a fixed by a fit to $\overline{N}N$ data

examples: Dover/Richard (1980,1982), Paris (1982,...,2009), Nijmegen (1984), Jülich (1991,1995), ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Meson-exchange: Jülich NN model

I) *V*_{el} starting point: Bonn *NN* potential

(R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149 (1986) 1)

(G-parity: Charge conjugation plus 180° rotation around the *y* axis in isospin space) \Rightarrow

$$V_{\bar{N}N}(\pi, \omega) = -V_{NN}(\pi, \omega) - \text{odd } G - \text{parity}$$

$$V_{\bar{N}N}(\sigma, \rho) = +V_{NN}(\sigma, \rho) - \text{even } G - \text{parity}$$

well defined over whole range

no modification of short-range part is done

 $\equiv \rightarrow$

< □ > < 同 > < 三 > <

The Jülich *NN* model

II) V_{ann}

• phenomenological optical potential (A) $V_{opt}(r) = (U_0 + iW_0)e^{-r^2/(2a^2)}$

(state- and energy independent!)

Fit to $\overline{N}N$ data [σ_{tot} , σ_{el} , σ_{ann}] up to $p_{lab} \approx 800$ MeV/c ($T_{lab} \approx 300$ MeV)

best fit:

a = 0.36 fm, $U_0 = -0.63$ GeV, $W_0 = -4.567$ GeV

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つくぐ

The Jülich *NN* model

microscopic annihilation model (for 2-meson channels) (D)

 $M_{i,j} = \pi, \eta, \rho, \omega, f_0, a_0, f_1, a_1, f_2, a_2$

- T. Hippchen et al., PRC 44 (1991) 1323; V. Mull et al., PRC 44 (1991) 1337
- V. Mull & K. Holinde, PRC 51 (1995) 2360

ъ

イロト イポト イヨト イヨト

p integrated cross sections

p differential cross sections

— D (microscopic) – – A (phenomenological)

Johann Haidenbauer Final state interaction

< ∃⇒

< 🗇 →

ъ

$p \rightarrow n$ differential cross sections

— D (microscopic) – – A (phenomenological)

Johann Haidenbauer Final state interaction

프 > + 프 >

< 🗇 >

ъ

p polarizations

Johann Haidenbauer Final state interaction

$p \rightarrow n$ polarizations

Chiral Effective Field Theory

- S. Weinberg, Physica 96A (1979) 327; PLB 251 (1990) 288
 - Respect/exploit symmetries of the underlying QCD
 - Different scales: Separation of low and high energy dynamics
 - low-energy dynamics is described in terms of the relevant degrees of freedom (e.g. pions)
 - high-energy dynamics remains unresolved
 - \rightarrow absorbed into contact terms

=	heavy dof
	^
	light dof

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Power counting

Expand interaction in powers $Q^n = (q/\Lambda)^n$, n = 0, 1, 2, ...

q ... soft scale (nucleon three-momentum, pion four-momentum, pion mass)

 Λ ... hard scale (\approx 1 GeV ... m_{ρ} , M_N)

- ⇒ systematic improvement of results by going to higher order (power)
- \Rightarrow estimation of theoretical uncertainty

expected to work for $q < \Lambda$

NN interaction in chiral effective field theory

• 4N contact terms involve low-energy constants (LECs) ... parameterize unresolved short-range physics

⇒ need to be fixed by fit to experiments

Johann Haidenbauer Fin

Final state interaction

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

NN interaction in chiral effective field theory

(see Reinert, Epelbaum, Krebs, EPJA 54 (2018) 86, for present status (N⁴LO, N⁴LO+))

ヘロン 人間 とくほ とくほう

ъ

The $\overline{N}N$ interaction in chiral EFT

•
$$V^{NN} = V_{1\pi} + V_{2\pi} + V_{3\pi} + \dots + V_{cont}$$

•
$$V_{el}^{NN} = -V_{1\pi} + V_{2\pi} - V_{3\pi} + ... + V_{cont}$$

•
$$V_{ann}^{\bar{N}N} = \sum_X V^{\bar{N}N \to X}$$
 $X \doteq \pi, 2\pi, 3\pi, 4\pi, ...$

- $V_{1\pi}$, $V_{2\pi}$, ... can be taken over from chiral EFT studies of the NN interaction
- Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N²LO) starting point: NN interaction by Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362
- Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N³LO) starting point: NN interaction by Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53
- V_{cont} ... same structure as in NN: $V_{cont} = \tilde{C} + C(p^2 + p'^2) + ...$

However, now the LECs have to be determined by a fit to $\overline{N}N$ data (phase shifts, inelasticites)!

no Pauli principle \rightarrow more partial waves, more contact terms

• $V_{ann}^{\bar{N}N}$ has no counterpart in *NN* empirical information: annihilation is short-ranged and practically energy-independent $V_{ann;eff}^{\bar{N}N} = \sum_{X} V^{\bar{N}N \to X} G_{X}^{0} V^{X \to \bar{N}N}, \quad V^{\bar{N}N \to X}(p, p_{X}) \approx p^{L} (a+bp^{2}+...); \quad p_{X} \approx \text{const.}$

$$T^{L'L}(p',p) = V^{L'L}(p',p) + \sum_{L''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} \frac{V^{L'L''}(p',p'') T^{L''L}(p'',p)}{2E_p - 2E_{p''} + i\eta}$$

- \overline{NN} potential up to N²LO (Kang et al., 2014) employ the non-local regularization scheme of EGM (NPA 747 (2005) 362) $(V(p', p) \rightarrow f^{\Lambda}(p') V(p', p) f^{\Lambda}(p); f^{\Lambda}(p) = e^{-(p/\Lambda)^4})$
- $\overline{N}N$ potential up to N³LO (Dai et al., 2017) employ the regularization scheme of EKM (EPJA 51 (2015) 53) $(V_{\pi}(q) \rightarrow V_{\pi}(r) \times f_{R}(r) \rightarrow V_{\pi}^{reg}(q); f_{R}(r) = \left[1 - exp(-r^{2}/R^{2})\right]^{6})$ $(V_{cont}: V(p', p) \rightarrow f^{\Lambda}(p') V(p', p) f^{\Lambda}(p); f^{\Lambda}(p) = e^{-(p/\Lambda)^{2}} R = 0.8-1.2 \text{ fm}; \Lambda = 2/R)$
- Fit to phase shifts and inelasticity parameters in the isospin basis (D. Zhou, R.G.E. Timmermans, PRC 86 (2012) 044003)
- Calculation of observables is done in particle basis:
 - ★ Coulomb interaction in the pp channel is included
 - the physical masses of p and n are used

イロン 不得 とくほう 不良 とう

Results for ${}^{3}S_{1} - {}^{3}D_{1}$ phase shifts (N²LO)

Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N²LO)

(bands represent cutoff variations!)

• PWA of Zhou, Timmermans, PRC 86 (2012) 044003

イロト イポト イヨト イヨト

ъ

N phase shifts (Dai et al., 2017; N³LO)

Johann Haidenbauer

Final state interaction

N phase shifts (N³LO)

Johann Haidenbauer

Final state interaction

Uncertainty

 Uncertainty for a given observable X(p): (Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)
 (S. Binder et al. [LENPIC coll.], PRC 93 (2016) 044002)

- estimate uncertainty via
 - · the expected size of higher-order corrections
 - · the actual size of higher-order corrections

$$\begin{split} \Delta X^{LO} &= \mathbf{Q}^{2} |X^{LO}| \quad (X^{NLO} \approx \mathbf{Q}^{2} X^{LO}) \\ \Delta X^{NLO} &= \max \left(\mathbf{Q}^{3} |X^{LO}|, \mathbf{Q}^{1} |\delta X^{NLO}| \right); \quad \delta X^{NLO} = X^{NLO} - X^{LO} \\ \Delta X^{N^{2}LO} &= \max \left(\mathbf{Q}^{4} |X^{LO}|, \mathbf{Q}^{2} |\delta X^{NLO}|, \mathbf{Q}^{1} |\delta X^{N^{2}LO}| \right); \quad \delta X^{N^{2}LO} = X^{N^{2}LO} - X^{NLO} \\ \Delta X^{N^{3}LO} &= \max \left(\mathbf{Q}^{5} |X^{LO}|, \mathbf{Q}^{3} |\delta X^{NLO}|, \mathbf{Q}^{2} |\delta X^{N^{2}LO}|, \mathbf{Q}^{1} |\delta X^{N^{3}LO}| \right); \quad \delta X^{N^{3}LO} = X^{N^{3}LO} - X^{N^{2}LO} \end{split}$$

expansion parameter Q is defined by

$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b}\right); \quad p \dots \bar{N}N \text{ on-shell momentum}$$

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

ъ

 Λ_b ... breakdown scale $\rightarrow \Lambda_b = 500 - 600$ MeV [for R = 0.8 - 1.2 fm] (EKM, 2015)

N phase shifts

イロト 不同 トイヨト イヨト

ъ

N phase shifts

æ

integrated cross sections

ъ

$\overline{\mathsf{qq}} \to \overline{\mathsf{qq}}$

Johann Haidenbauer Final state

Final state interaction

$\overline{p}p \rightarrow \bar{n}n$

Johann Haidenbauer

Final state interaction

p cross sections

ヘロト ヘロト ヘヨト ヘヨト

ъ

N interaction in the final state

Johann Haidenbauer Final state interaction

æ

イロト イヨト イヨト イヨト

Treatment of the final-state interaction

• Migdal-Watson: $A \approx N \cdot A_0 \cdot T_{\bar{p}p}$

A₀ ... elementary production/reaction amplitude, N ... normalization factor

works reliably only for interactions with a rather large scattering length, e.g. ${}^{1}S_{0}$ $np \rightarrow a = -23.5$ fm A. Gasparyan et al., PRC 72 (2005) 034006

• DWBA: $A = A_0 + A_0 G_{\bar{p}p} T_{\bar{p}p}$

for a short-ranged production mechanism A_0 is only weakly momentum (energy) dependent

• Jost-function approach: $A \approx A_0[1 + G_{\overline{p}p}T_{\overline{p}p}] = A_0\psi_q^{(-)*}(0) = A_0J^{-1}(-q)$

(may be valid for excess energies \leq 50 MeV)

MW used in the initial investigation: A. Sibirtsev et al., PRD 71 (2005) 054010 DWBA used in refined study: X.-W. Kang et al., PRD 91 (2015) 074003

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dispersion relations (Muskhelishvili, Omnes)

Assume point-like production operator (large momentum transfer) • is practically constant with respect to variations in m_{ph}^2

Dispersion relation technique (A. Gasparyan et al., PRC 69 (2004) 034006)

$$A(s, t, m^{2}) = \exp\left[\frac{1}{\pi} \int_{m_{0}^{2}}^{\infty} \frac{\delta_{p\wedge}(m'^{2})}{m'^{2} - m^{2} - i0} dm'^{2}\right] \times \Phi(s, t, m^{2})$$

model independent!!

 \Rightarrow theoretical uncertainty of extracted scattering length: \pm 0.3 fm However, valid only for elastic scattering, single-channel systems

★週 ▶ ★ 注 ▶ ★ 注 ▶ …

ъ

State dependence of final-state interaction

Which $\bar{p}p$ partial waves can occur near threshold?

$$J/\psi$$
 ($\psi'(3686)$): $I^{G}(J^{PC}) = 0^{-}(1^{-})$

$$\begin{split} & J/\psi \to \gamma \bar{p} p : J^{PC} \text{ is conserved} \\ & \Rightarrow {}^{1}S_{0} \; (0^{-} \; +), \, {}^{3}P_{0} \; (0^{+} \; +), \, ... \\ & \text{BESIII Collaboration, PRL 108 (2012) 112003: PWA \to 0^{-} \; + } \end{split}$$

 $\begin{array}{l} \mathbf{J}/\psi \rightarrow \pi^{0} \bar{p} p : \ \mathbf{I}^{G}, \ \mathbf{J}^{PC} \text{ is conserved} \\ \Rightarrow {}^{33} S_{1}, {}^{33} P_{1}, \dots \end{array}$

$$\begin{split} & J/\psi \to \eta \bar{\rho} p; \ I^G, \ J^{PC} \text{ is conserved} \\ & \Rightarrow {}^{13}S_1, {}^{13}P_1, \dots \end{split}$$

 $B^+ \to K^+ \bar{\rho} p$, $B \to D \bar{\rho} p$ Parity is not conserved \to more partial waves possible

(2/+1)(2S+1)L.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

\mu in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N²LO)

 $\overline{N}N$ FSI in ³S₁ state is relevant

(bands represent cutoff variations!)

Johann Haidenbauer

o in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N²LO)

 $\overline{N}N$ FSI in ¹ S_0 state is relevant

(bands represent cutoff variations!)

Johann Haidenbauer

Migdal-Watson versus DWBA

Results for Jülich meson-exchange $\overline{N}N$ potential A(OBE):

---- ... in Migdal-Watson approach (A. Sibirtsev (2005)) ----- ... in DWBA (X.-W. Kang (2015); L.-Y. Dai (2018))

⇒ Migdal-Watson approach should not be trusted!

イロト イヨト イヨト

op in final state

- in principle, same pp FSI effects in the same final states
- no large effect in $J/\psi \rightarrow \omega \bar{p} p \Rightarrow$ no large effect in I = 0

caveat: $\overline{p}p$ could be produced predominantly in the ¹³*P*₀ state in the decay into $\omega \overline{p}p$ ($\phi \overline{p}p$) but in the ¹¹*S*₀ in case of $\gamma \overline{p}p$

- no large effect in $\psi' \rightarrow \gamma \overline{\rho} p$ \Rightarrow different isospin combinations must be relevant in J/ψ decay
- $\bar{p}p$ FSI predicted by the meson-exchange models, but also the one suggested by the $\bar{p}p$ PWA (χ EFT potentials) does not reproduce the $J/\psi \rightarrow \gamma \bar{p}p$ invariant mass spectrum

however: no $\overline{\rho}p$ scattering data near threshold contribution of the (spin-singlet) ${}^{1}S_{0}$ partial wave is small \Rightarrow possibly the interaction in the ${}^{1}S_{0}$ is not well constrained

 \Rightarrow it is possible to readjust the ³¹S₀ (l = 1) interaction so that the $\gamma \bar{p}p$ data are reproduced - without spoiling the $\bar{p}p$ results!

- X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003
- L.-Y. Dai, JH, U.-G. Meißner, PRD 98 (2018) 014005

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

L.-Y. Dai, JH, U.-G. Meißner, PRD 98 (2018) 014005

reproduces the $\bar{p}p$ data with same quality as the original χEFT potentials

• BESIII (M. Ablikim et al.), PRL 117 (2016) 042002

Evidence for $\overline{N}N$ bound states?

	N ² LO [1]	N ³ LO <mark>[2]</mark>	El-Bennich [3]	Entem [4]	Milstein [5]
¹¹ S ₀	-	-	-4.8-i 26	-	22-i 33
³¹ S ₀	-37-i 47*	-51-i 41*	-	-	-
		(-2.1-i 94) [†] *			
¹³ S ₁	$+(5.6 \cdots 7.7) - i(49.2 \cdots 60.5)$	-	-	-	-
¹¹ P ₁	-	-	1877±i13	-	-
¹³ P ₀	$-(3.7\cdots 0.2) - i(22.0\cdots 26.4)$?	1876±i5	1895±i17	-
³³ P ₀	-	-	1871±i11	-	-
¹³ P ₁	-	-	1872±i10	-	-
³³ P ₁	-	-	-4.5-i 9	-	-

$M_{p} + M_{\bar{p}} = 1876.574 \text{ MeV}, \quad E_{B}, M_{R} \text{ in MeV}$

[1] Xian-Wei Kang et al., JHEP 02 (2014) 113 * needed for $J/\psi \rightarrow \gamma \bar{\rho} p$ [2] Ling-Yun Dai, JHEP 07 (2017) 078 (¹ N²LO) * needed for $J/\psi \rightarrow \gamma \bar{\rho} p$ [3] B. El-Bennich et al., PRC 79 (2009) 054001 [4] D.R. Entern & F. Fernández, PRC 73 (2006) 045214

[5] A.I. Milstein & S.G. Salnikov, NPA 966 (2017) 54

BES 2005; BESIII 2011,2016: X(1835) $(J^{PC} = 0^{-+}, I = 0)$

seen in $J/\psi \to \gamma \pi^+ \pi^- \eta'$: $M_R = 1836.5 \pm 3^{+5.6}_{-2.1}$ MeV, $\Gamma = 190 \pm 9^{+38}_{-36}$ MeV evidence (?) in $J/\psi \to \gamma \bar{p} p$: $M_R = 1832^{+19}_{-5} + ^{18}_{-17}$ MeV, $\Gamma < 76$ MeV (90 % C.L.)

X(1835): $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

L.-Y. Dai, JH, U.-G. Meißner, PRD 98 (2018) 014005

BESIII (M. Ablikim et al.), PRL 117 (2016) 042002

イロト 不得 とくき とくきとうき

What about a genuine resonance?

A genuine X(1835) resonance would contribute to the $\overline{N}N$ interaction too!

$$V^{\bar{N}N} \Rightarrow V^{\bar{N}N} + \gamma_0^{\bar{N}N} \frac{1}{E_{\bar{N}} + E_N - m_X^0} \gamma_0^{\bar{N}N}$$

$$m_X^0$$
 ... bare mass of a possible X(1835) resonance $\gamma_0^{\bar{N}N}$... bare $\bar{N}NX$ vertex

one needs to determine m_X^0 and the parameters of the bare $\bar{N}NX$ vertex in a combined fit to $\bar{N}N$ data and the $J/\psi \rightarrow \gamma \bar{p}p$ invariant mass spectrum

is done by us for $e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-$ (X(4630)) \rightarrow L.-Y.Dai, JH, U.-G. Meißner, PRD 96 (2017) 116001 $\bar{\rho}p \rightarrow \bar{D}D$ (ψ (3770)) \rightarrow JH, G. Krein, PRD 91 (2015) 114022

essential difference: resonances are above threshold!

・ロト・西ト・ヨト・ヨー シタの

The reaction $e^+e^- \rightarrow \bar{p}p$: experimental situation

 BaBar: J.P. Lees et al., PRD 87 (2013) 092005, BESIII: M. Ablikim et al., PRL 124 (2020) 042001

 theory: Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, PRL 128 (2022) 052002

Johann Haidenbauer Final state interaction

ъ

The reaction $e^+e^- \rightarrow \bar{\rho}\rho$: formulae

$$\sigma_{e^+e^- o \ \overline{
ho}p} = rac{4\pi lpha^2 eta}{3s} \ C_{
ho}(s) \ \left[|G_M(s)|^2 + rac{2M_{
ho}^2}{s} |G_E(s)|^2
ight]$$
 $|G_{
m eff}(s)| = \sqrt{rac{\sigma_{e^+e^- o \ \overline{
ho}p}(s)}{rac{4\pi lpha^2 eta}{3s}} \ C_{
ho}(s) \left[1 + rac{2M_{
ho}^2}{s}
ight]}$

$$\begin{split} \sqrt{s} &= M_{\overline{p}p} = q^2, \quad \beta &= k_p / k_e \approx 2 \, k_p / \sqrt{s} \\ \text{Sommerfeld-Gamov factor: } C_p(s) &= y / (1 - \exp(-y)); \quad y &= \pi \alpha \sqrt{s} / (2 \, k_p) \quad (\text{for } \overline{p}p, \text{ etc.}) \end{split}$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} C_{\rho}(s) |G_M(s)|^2 \left[(1 + \cos^2 \theta) + \frac{4M_{\rho}^2}{s} \left| \frac{G_E(s)}{G_M(s)} \right|^2 \sin^2 \theta \right]$$

$$P_{y} = \frac{2M_{\rho}\sin 2\theta}{\sqrt{s}D} \operatorname{Im} G_{E}^{*}G_{M} = -\frac{2M_{\rho}\sin 2\theta}{\sqrt{s}D} |G_{E}(s)| |G_{M}(s)| \sin \Phi; \quad \Phi = \arg(\frac{G_{E}}{G_{M}})$$

 $C_{xx}, C_{yy}, C_{zz}, C_{xz}, C_{zy} \dots$ involve other combinations of $G_E(s), G_M(s)$

$$D = \sin^2 \theta \frac{4M_p^2}{s} |G_E(s)|^2 + (1 + \cos^2 \theta) |G_M(s)|^2$$

P_y, *C_{xx}*, etc. ... difficult to measure for *p̄*p easier for ΛΛ, etc. (self-analyzing weak decay of hyperons)

$e^+e^- \rightarrow \overline{\rho}\rho$ in DWBA

one-photon exchange $\Rightarrow \overline{N}N$, e^+e^- are in the 3S_1 , 3D_1 partial waves

$$\begin{split} M_{L,L'} &\propto f_L^{e^+e^-} \cdot f_{L'}^{\bar{p}p} \\ f_{L=0}^{e^+e^-} &= \left[1 + \frac{m_e}{\sqrt{s}}\right]; \quad f_{L=2}^{e^+e^-} = \left[1 - \frac{2m_e}{\sqrt{s}}\right] \\ f_{L=0}^{\bar{p}p} &= \left[G_M + \frac{M_p}{\sqrt{s}}G_E\right]; \quad f_{L=2}^{\bar{p}p} = \left[G_M - \frac{2M_p}{\sqrt{s}}G_E\right] \\ f_{L=0}^{\bar{p}p} = G_{E}(k_p = 0) = 0 \quad \rightarrow \quad G_M(k_p = 0) = G_E(k_p = 0) \end{split}$$

$$f_{L'}^{\bar{p}p}(k;E_k) = f_{L'}^{\bar{p}p;0}(k) + \sum_{L} \int_0^\infty \frac{dpp^2}{(2\pi)^3} f_L^{\bar{p}p;0}(p) \frac{1}{2E_k - 2E_p + i0^+} T_{LL'}^{\bar{p}p}(p,k;E_k)$$

 $f_{L'}^{\bar{p}p;0}$... bare vertex with bare form factors G_M^0 and G_E^0 • assume $G_M^0 \equiv G_E^0 = \text{const.}$... only single parameter (overall normalization)

J.H., X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N²LO)

(bands represent cutoff variations!)

--- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]

PS170: G. Bardin et al., NPB 411 (1994) 3 $(\sigma_{\bar{p}p \rightarrow e^+e^-} \propto \frac{k_e^2}{k_h^2} \sigma_{e^+e^-} \rightarrow \bar{p}p;$ but there is a systematic overall difference of \approx 1.47)

Note: $\sigma_{e^+e^- \rightarrow \overline{p}p} \neq 0$ at threshold because of attractive Coulomb interaction in $\overline{p}p!$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Results for $e^+e^- \rightarrow \bar{p}p$

 $\epsilon = \sqrt{s} - 2M_p = 36.5 \text{ MeV}$

Johann Haidenbauer Final state

Final state interaction

・ロン ・四 と ・ ヨ と ・

æ

J.H., C. Hanhart, X.-W. Kang, U.-G. Meißner, PRD 92 (2015) 054032 (N²LO)

(bands represent cutoff variations!)

--- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]

FENICE: A. Antonelli et al., NPB 517 (1998) 3 SND 2014: M.M. Achasov et al., PRD 90 (2014) 112007 SND 2017: K.I. Belobodorov et al., EPJ WoC 199 (2019) 02026 BESIII 2019: preliminary !!

- *NN* interaction up to N³LO in chiral effective field theory
- new local regularization scheme is used for pion-exchange contributions
- new uncertainty estimate suggested by Epelbaum, Krebs, Meißner
- excellent description of N
 N amplitudes is achieved
- nice agreement with $\bar{p}p$ observables for $T_{lab} \leq 250$ MeV is achieved
- predictions are made for low energies ($T_{lab} \leq 5.3 \text{ MeV}$):
 - low-energy annihilation cross section
 - level shifts of antiprotonic atoms
 - \Rightarrow approach works not only for NN but also very well for $\overline{N}N$

イロト 不同 トイヨト イヨト

Summary II

- Our analysis does not exclude that something exotic is seen in $J/\psi \rightarrow \gamma \bar{p}p$. However, it strongly suggests that FSI effects are a plausible and likely explanation for the enhancement in the $\bar{p}p$ invariant mass distribution. This conjecture explains also the energy dependence of $J/\psi \rightarrow \omega \bar{p}p$, $\psi(3686) \rightarrow \gamma \bar{p}p$, $e^+e^- \rightarrow \bar{p}p$, etc.
- The particularly strong enhancement seen in $J/\psi \rightarrow \gamma \bar{p}p$ could be indeed an evidence for a $\bar{p}p$ bound state (baryonium): In our analysis it is in the isospin $I = 1 \, {}^1S_0$ state.
- However, it is not an unambiguous signal for a bound state near-threshold bound state -> strong FSI effects strong FSI effects -> near-threshold bound state
- Reliable conclusions from the p̄p invariant mass spectrum on the sub-threshold region are difficult to draw. One cannot avoid sizable variations/uncertainties in such an extrapolation.
 Alternative: p̄p annihilation into selective four-meson channels, e.g.
 p̄p → π⁰p̄p_{bound} → π⁰π⁻π⁺η'
- Differences in the distributions for $J/\psi \rightarrow \gamma \bar{p}p$, $J/\psi \rightarrow \omega \bar{p}p$, and $\psi' \rightarrow \gamma \bar{p}p$ have to be expected. They are simply sign of different reaction mechanisms.

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

Backup slides

Johann Haidenbauer Final state interaction

ヘロト 人間 とくほとく ほとう

æ

Annihilation potential

• experimental information:

- annihilation occurs dominantly into 4 to 6 pions (two-body channels like
- $\bar{\rho}\rho \rightarrow \pi^+\pi^-, \ \rho^{\pm}\pi^{\mp}$ etc. contribute in the order of \approx 1%)
- thresholds: for 5 pions: \approx 700 MeV for $\overline{N}N$: 1878 MeV
- \bullet produced pions have large momenta \rightarrow annihilation process depends very little on energy

• annihilation is a statistical process: properties of the individual particles (mass, quantum numbers) do not matter

- phenomenlogical models: bulk properties of annihilation can be described rather well by simple energy-independent optical potentials
- range associated with annihilation is around 1 fm or less
 → short-distance physics
- \Rightarrow describe annihilation in the same way as the short-distance physics in V_{el}^{NN} , i.e. by contact terms (LECs)

⇒ describe annihilation by a few effective (two-body) annihilation channels (unitarity is preserved!)

$$V^{\bar{N}N} = V_{el}^{\bar{N}N} + V_{ann,eff}^{\bar{N}N}; \quad V_{ann,eff}^{\bar{N}N} = \sum_{X} V^{\bar{N}N \to X} G_{X}^{0} V^{X \to \bar{N}N}$$
$$V^{\bar{N}N \to X} (p_{\bar{N}N}, p_{X}) \approx p_{\bar{N}N}^{L} (a + b p_{\bar{N}N}^{2} + ...); \quad p_{X} \approx \text{ const.}$$

イロン 不得 とくほう 不良 とう

Contributions of V_{cont} for $\overline{N}N$ up to N³LO

$$\begin{aligned} V^{L=0} &= & \tilde{C}_{\alpha} + C_{\alpha}(p^2 + p'^2) + D_{\alpha}^1 p'^2 p'^2 + D_{\alpha}^2 (p^4 + p'^4) \\ V^{L=1} &= & C_{\beta} \, p \, p' + D_{\beta} \, p \, p' (p^2 + p'^2) \\ V^{L=2} &= & D_{\gamma} \, p^2 p'^2 \end{aligned}$$

 $\tilde{c}_i \dots$ LO LECs [4], $c_i \dots$ NLO LECs [+14], $D_i \dots N^3$ LO LECs [+30], $p = |\mathbf{p}|; p' = |\mathbf{p}'|$ $V_{ann;eff}^{\bar{N}N}$

$$\begin{split} V_{ann}^{L=0} &= -i \, (\tilde{C}_{\alpha}^{a} + C_{\alpha}^{a} p^{2} + D_{\alpha}^{a} p^{4}) \, (\tilde{C}_{\alpha}^{a} + C_{\alpha}^{a} p^{\prime 2} + D_{\alpha}^{a} p^{\prime 4}) \\ V_{ann}^{L=1} &= -i \, (G_{\beta}^{a} p + D_{\beta}^{a} p^{3}) \, (C_{\beta}^{a} p^{\prime} + D_{\beta}^{a} p^{\prime 3}) \\ V_{ann}^{L=2} &= -i \, (D_{\gamma}^{a})^{2} p^{2} p^{\prime 2} \\ V_{ann}^{L=3} &= -i \, (D_{\alpha}^{a})^{2} p^{3} p^{\prime 3} \end{split}$$

 $\begin{array}{l} \alpha \ \dots \ ^{1}S_{0} \ \text{and} \ ^{3}S_{1} \\ \beta \ \dots \ ^{3}P_{0}, \ ^{1}P_{1}, \ \text{and} \ ^{3}P_{1} \\ \gamma \ \dots \ ^{1}D_{2}, \ ^{3}D_{2} \ \text{and} \ ^{3}D_{3} \\ \delta \ \dots \ ^{1}F_{3}, \ ^{3}F_{3} \ \text{and} \ ^{3}F_{4} \end{array}$

• unitarity condition: higher powers than what follows from Weinberg power counting appear!

same number of contact terms (LECs)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つくぐ

effective χ square

Fit to phase shifts and inelasticity parameters in the isospin basis $\tilde{\chi}^2 \approx |S_{LL'} - S_{LL'}^{PWA}|^2 / \Delta^2 \dots S_{LL'}$ are S-matrix elements (no uncertainties for the PWA given $\rightarrow \Delta^2 \dots$ simple scaling parameter)

	R=0.8 fm	R=0.9 fm	R=1.0 fm	R=1.1 fm	R=1.2 fm
$T_{lab} \leq$ 25 MeV	0.003	0.004	0.004	0.019	0.036
$T_{\it lab} \leq$ 100 MeV	0.023	0.025	0.036	0.090	0.176
$T_{lab} \leq$ 200 MeV	0.106	0.115	0.177	0.312	0.626
$T_{\it lab} \leq$ 300 MeV	2.012	2.171	3.383	5.531	9.479

• minimum around $R = 0.8 \sim 0.9$ fm ($R = 0.9 \sim 1.0$ fm in the NN case)

Calculation of observables is done in particle basis:

- Coulomb interaction in the pp channel is included
- the physical masses of p and n are used

 $\overline{n}n$ channels opens at $p_{lab} = 98.7$ MeV/c ($T_{lab} = 5.18$ MeV/c)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

		$ar{ ho} ho o ar{ ho} ho$			$ar{p}p ightarrowar{n}n$				
	p _{lab} (MeV/c)	200	400	600	800	200	400	600	800
	T _{lab} (MeV)	21.1	81.7	175	295	21.1	81.7	175	295
$^{1}S_{0}$	N ³ LO	15.9	8.0	4.1	2.0	0.7	0.1		
	PWA	15.7	7.9	4.1	2.1	0.7	0.1		
${}^{3}S_{1}$	N ³ LO	66.6	25.9	13.1	8.0	2.9	0.9	0.5	0.3
	PWA	66.1	26.0	13.2	8.8	3.0	1.0	0.5	0.2
${}^{3}P_{0}$	N ³ LO	4.9	5.4	5.1	3.6	1.5	0.8	0.1	
	PWA	4.9	5.4	5.0	3.5	1.5	0.8	0.1	
$^{1}P_{1}$	N ³ LO	1.0	2.5	4.4	5.6	0.8	0.1		
	PWA	0.9	2.5	4.5	5.6	0.8	0.1		
³ P ₁	N ³ LO	1.8	5.0	4.1	3.6	5.1	3.0	0.2	0.1
	PWA	1.8	4.9	4.0	3.5	4.9	2.9	0.2	0.1
${}^{3}P_{2}$	N ³ LO	7.0	17.1	14.1	9.9	1.0	1.5	0.4	0.1
	PWA	7.0	17.0	13.9	9.6	0.9	1.4	0.4	0.1

(N³LO with R = 0.9 fm)

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

annihilation cross section

• anomalous threshold behavior due to attractive Coulomb interaction

<ロト < 回 > < 回 > < 回 > 、

ъ

Hadronic level shifts in hyperfine states of $\bar{p}H$

Deser-Trueman formula:

$$\Delta E_{S} + i \frac{\Gamma_{S}}{2} = -\frac{4}{M_{p}r_{B}^{3}}a_{S}^{sc}\left(1 - \frac{a_{S}^{sc}}{r_{B}}\beta\right)$$
$$\Delta E_{P} + i \frac{\Gamma_{P}}{2} = -\frac{3}{8M_{p}r_{B}^{5}}a_{P}^{sc}$$

 r_B ... Bohr radius ... 57.6 fm; $\beta = 2(1 - \Psi(1)) \approx 3.1544$ a^{sc} ... Coulomb-distorted $\overline{\rho}p$ scattering length

Carbonell, Richard, Wycech, ZPA 343 (1992) 343: works well once Coulomb and *p*-*n* mass difference is taken into account

NOTE:

different sign conventions for scattering lengths in $\overline{N}N$ and $\overline{K}N!$

 $\Delta E < 0 \Leftrightarrow$ repulsive shift

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Hadronic level shifts in hyperfine states of $\bar{p}H$

		-			
	NLO	N ² LO	N ³ LO	N ² LO*	Experiment
E1 So (eV)	-448	-446	-443	-436	-440(75) [1]
5 (-10)	4455	1100	4474	4474	-740(150) [2]
1 ₁ <i>S</i> ₀ (eV)	1155	1183	1171	11/4	1200(250) [1]
					1600(400) [2]
E3 ₈₁ (eV)	-742	-766	-770	-756	-785(35) [1]
					-850(42) [3]
Г _{3<i>S</i>1} (eV)	1106	1136	1161	1120	940(80) [1]
					770(150) [3]
E3 P0 (meV)	17	12	8	16	139(28) [4]
Γ _{3<i>P</i>0} (meV)	194	195	188	169	120(25) [4]
E _{1S} (eV)	-670	-688	-690	-676	-721(14) [1]
Γ _{1<i>S</i>} (eV)	1118	1148	1164	1134	1097(42) [1]
E _{2P} (meV)	1.3	2.8	4.7	2.3	15(20) [4]
Γ _{2P} (meV)	36.2	37.4	37.9	27	38.0(2.8) [4]

Augsburger et al., NPA 658 (1999) 149;
 Heitlinger et al., ZPA 342 (1992) 359;

[2] Ziegler et al., PLB 206 (1988) 151; [4] Gotta et al., NPA 660 (1999) 283

イロト イポト イヨト イヨト

3

* Xian-Wei Kang et al., JHEP 02 (2014) 113

\mu in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N²LO)

N FSI in additional channels

(bands represent cutoff variations!)

Johann Haidenbauer

Final state interaction