Status of the CEPC Drift Chamber Software

Yao Zhang¹

Mengyao Liu², Wenxing Fang¹, Tao Lin¹,

Weidong Li¹, Xingtao Huang², Ye Yuan^{1,} Xueyao Zhang², Chendong Fu¹

CEPC Physics and Detector Plenary Meeting

1. IHEP

2. Shandong University

22 Apirl 2022

- Motivation
- CEPC v4 track fitting
- Performance validation
- Summary

Drift Chamber(DC) Software

- Drift chamber is the key detector in the 4th conceptual detector design to provide PID
 - Good PID ability ($2\sigma \pi/K$ separation at P < ~ 20 GeV/c)
 - Precise momentum measurement (eff. ~100%, σp<=0.1%)
- Motivation of DC software project
 - Development of simulation and reconstruction for DC
 - Support the detector design, optimization and performance study
 - Support physics sensitivity study

Requirements for DC software

- Modular design and friendly interfaces
- Easily integrated with common tools (ACTS, Genfit etc.)
- Reuse existing algorithms from other experiments
- Application of advanced technic (ML) to simulation and reconstruction
- Manpower
 - IHEP: Yao Zhang, Tao Lin, Wenxing Fang, Chengdong Fu, Ye Yuan, Weidong Li
 - SDU: Mengyao Liu, Xueyao Zhang, Xingtao Huang

A PID drift chamber

Physics	Measurands	Detector	Performance
process		subsystem	requirement
$\begin{array}{l} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$

Requirements of The CEPC tracker

DC software

The drift chamber software has been developed from scratch

- CEPCSW
 - Gaudi based framework
 - External libraries and tools
- Geometry and field map
 - DD4hep
 - Non-uniform magnetic field: done
- Data model
 - EDM4hep and FWCore
 - dN/dx event model: done
- Drift chamber
 - DC simulation: done
 - DC digitization: done
 - Waveform simulation: in progress
 - Waveform reconstruction: in progress
 - Track fitting with measurement: done
 - dN/dx reconstruction: in progress
 - Multi track reconstruction: done
 - Performance check: done

Drift chamber simulation and reconstruction flow

Drift Chamber Parameters in CEPCSW

The base line configuration of DC in CEPCSW

Half length	2980 mm
Inner and outer radius	800 to 1800 mm
# of Layers	100/55
Cell size	~10x10mm/18x18mm
Gas	He:C ₄ H ₁₀ =90:10
Single cell resolution	0.11 <i>mm</i>
Sense to field wire ratio	1:3
Total # of sense wire	81631/24931
Stereo angle	1.64~3.64 <i>deg</i>
Sense wire	Gold plated Tungsten ϕ =0.02 <i>mm</i>
Field wire	Silver plated Aluminum ϕ =0.04 <i>mm</i>
Walls	Carbon fiber 0.2 <i>mm</i> (inner) and 2.8 <i>mm</i> (outer)

Silicon detectors Parameters in CEPCSW

=

Silicon detecor	Number of layer	Radius(mm)	$\sigma_{_U}(\mu m)$	$\sigma_{v}(\mu m)$
VXD	3 double layers	16-58	2.8/6/4/4/4/4	2.8/6/4/4/4/4
SIT	4 layers	230	7.2	86
SOT(SET)	1 layer	1815	7.2	86

CRD tracker o1 v01

Progress of CEPC v4 tracker reconstruction

- CEPC v4 tracking flow is implemented
- Track fitting with tracker measurements
 - Silicon measurement + Drift chamber measurement
- Multi-track track finding based on MC truth
- Performance check has been done
 - Preliminary result is reasonable
 - Consistent with fast simulation

Data flow of DC reconstruction

- Two cell size setups are studied
 - 10mmx10mm and 18mmx18mm

Almost no effect on high momentum region

Effect of drift chamber wire material

• With and without wire construction in simulation

Small effect on low momentum region(pt<5GeV)

Momentum resolution

The momentum resolution is reasonable

Single track performance validation

• Track parameters pull distribution is reasonable

Impact parameter

• Impact parameter $d_0 \& Z_0$ distribution

Consistent with the fast simulation

Fitting efficiency

• Efficiency $\varepsilon(=\frac{The \ number \ of \ track \ fitted \ successful}{The \ number \ of \ total \ track})$

• Fitting efficiency is around 99%

Silicon+DC vs Silicons

• Got better momentum measurement with the drift chamber

Summary

- The track fitting with Si+DC combined measurement is realized
- The multi-track fitting has been developed
- The performance check for Silicon+DC is done
- The first release of CEPC tracking software is ready
- Future plan
 - dN/dx
 - Waveform simulation and analysis study
 - Fast simulation according to data with NN
 - Background in simulation and reconstruction
 - Track finding development
 - Machine learning
 - Track finding from silicon seed or self-tracking
 - Release for detector and physics performance study

Thank you!

