

PFA Crystal Calorimeter: hadronic performance studies and development status

Yong Liu (IHEP), for the CEPC Calorimeter Working Group Apr. 22, 2022

- Hadronic performance with a homogeneous calorimeter
 - Motivation: abundant hadrons in jets \rightarrow hadronic performance is a key
 - Method: single hadron studies with Geant4 full simulation
 - Key performance: response linearity and energy resolution
- PFA crystal calorimeter: development status
 - With a major focus on the hardware development

Motivations

- CEPC physics programs
 - Hadronic decays of Higgs/Z/W bosons: abundant hadrons (<10 GeV) within jets
- Crucial: hadrons in scintillator-based calorimeters
 - Within the <u>CEPC 4th concept detector</u>: crystal ECAL + scintillating glass HCAL
 - A leap in terms of sampling fractions
 - Aim to improve the energy resolution: EM + hadronic energy resolution

Motivations

- CEPC physics programs
 - Hadronic decays of Higgs/Z/W bosons: abundant hadrons (<10 GeV) within jets
- Crucial: hadrons in scintillator-based calorimeters
 - Within the <u>CEPC 4th concept detector</u>: crystal ECAL + scintillating glass HCAL
 - A leap in terms of sampling fractions
 - Aim to improve the energy resolution: esp. the hadronic resolution
 - A large fraction of hadronic showers initiated in the crystal ECAL
 - Hadronic showers mostly contained in the scintillating glass HCAL
 - Synergies between crystal and glass calorimeters: intrinsic hadronic performance
- Hadronic responses: key aspects to be studied
 - Calorimeter responses and performance (linearity and resolution) in Geant4
 - Geant4 validation studies: profit from existing beam test data sets

MIP calibration with muons

- MIP calibration: energy scale for reconstruction
 - Varying the energy threshold in simulation: 0 0.5 MIP

- Energy threshold: finally to be determined by several factors
 - FE electronics (pedestals, occupancy), SiPM noises, beam-related backgrounds, etc.
- CALICE prototypes: 0.3 0.5 MIP thresholds (depending on technical options)

Remark: in real PFA-calos, longitudinal

determining shower start point

leakage can be mitigated and corrected: benefit from the high granularity by

- Focus on the homogeneous calorimeter
 - Large and deep layers for minimum leakage effects
 - Synergies between crystal ECAL and scintillating glass HCAL

- A global linear curve <u>can not</u> well calibrate the hadronic response
 - Noticeable deviations, especially in the lower energy region
 - Separate energy calibrations for low and high energy regions?

Geant4 10.05.p01

Energy deposition only: digitisation not included

Hadronic response ratio and energy resolution

- Significantly lower response in 1-10 GeV region
- Note: scintillator quenching effects not yet included in the studies (ongoing studies)
- Energy resolution: non-Gaussian distributions
 - Significant difference between RMS and sigma
 - Not exactly follow $1/\sqrt{E(GeV)}$ curve
 - Large constant term: >5%

Geant4 10.05.p01

- Categorize energy depositions of hadronic showers
 - Components within hadronic showers: EM, hadronic, invisible
 - EM component primarily from π^0 's produced in the hadronic cascade
 - EM energy deposition usually detected with higher efficiency

- EM component fraction: incident energy dependent
- EM/hadronic energy depositions: significant non-Gaussian fluctuations
 - Determined by the intrinsic behavior of hadronic showers

Geant4 10.05.p01

Categorize energy depositions of hadronic showers

Total energy deposition: non-Gaussian distributions → Dominate the large constant term (>5%)

- Geant4 simulation for homogenous calorimetry
 - Can we trust the hadronic response in Geant4?
- Limited data sets of hadron beam tests for homogenous calorimeters
 - Existing calorimeters: homogenous ≈ crystals/lead glass
 - For crystal calorimeters: typical beam tests with electrons/gammas

- Geant4 simulation for homogenous calorimetry
 - Can we trust the hadronic response in Geant4?
- Limited data sets of hadron beam tests for homogenous calorimeters
 - Existing calorimeters: homogenous \approx crystals/lead glass, primarily as ECAL
 - For crystal calorimeters: typical beam tests with electrons/gammas
- Extensive studies with CMS calorimeters

Eur. Phys. J. C (2009) 60: 359-373

- Combined beam tests of CMS ECAL barrel (EB) and HCAL barrel (HB) prototypes
 - Note: CMS ECAL with PbWO4 crystal bars; HCAL with plastic scintillator and brass as absorber
- Valuable data sets with various species of hadrons (π^{\pm} , K^{\pm} , p/\bar{p}) in 2-350 GeV
 - Especially in the energy range of 2-10 GeV
- Geant4 validation studies with both beam tests and collision data

Validation studies: CMS calorimeters

EPJ Web of Conferences 251, 03010 (2021)

CMS combined FB+HB: selected results

Sunanda Banerjee and Vladimir Ivanchenko, Validation of Physics Models of Geant4 Versions 10.4.p03, 10.6.p02 and 10.7.p01 using Data from the CMS Experiment

Energy response (average) of protons/anti-protons

- Geant4 simulation can well reproduce hadronic responses
 - Impressive consistency: MC/data discrepancy within a few percent
 - Note: only "simple" digitization for EB+HB (Gaussian smearing for hit energy)

 \rightarrow Need a "bridge" between CMS calorimeter simulation and our simulation

Hadronic energy resolution

- How to further improve the energy resolution?
 - Distinguish EM/hadronic components
 - Event-by-event fluctuations + incident energy dependent
 - Perform event-level corrections
- Option 1: "Software compensation" technique
 - Estimators: (1) energy deposition density, (2) timing (new)
 - Established for the CALICE-AHCAL and validated with prototype beamtest data
 - We plan to further explore potentials for crystal/scintillating glass options

Hadronic energy resolution

- Hadronic cascades by nature lead to non-Gaussian fluctuations
 - Undesired: prominent degrade in response linearity and resolution
- How to improve the hadronic energy linearity and resolution?
 - Distinguish EM/hadronic components
 - Event-by-event fluctuations + incident energy dependent
 - Perform event-level corrections
- Option 1: "Software compensation" technique
 - Estimators: energy deposition density, timing (new progress)
 - Established for AHCAL option and validated with prototype beamtest data
 - We plan to further explore potentials for crystal/scintillating glass options
- Option 2: "Dual-readout " technique
 - Estimators: scintillation and Chereknov light
 - EM+Had components: scintillation photons
 - EM component: mostly with Cherenkov photons

Highlights of potential studies in the next pages

- Energy estimators: scintillation and Cherenkov light
 - Crystal/scintillating glass: capable to produce and detect scintillation photons (S) and Cherenkov photons (C) at the same time
 - Implemented them Geant4 full simulation for homogeneous calorimetry

- "Conventional" readout scheme
 - Use only scintillation light as energy estimator

0.2335/9 120 -1.586 ± 0.8739 HCAL Calibrated Energy (Scintillation) / GeV 0.7922 ± 0.03189 χ^2 / ndf 0.2655/8 100 0.02269 ± 0.184 0.6106 ± 0.05475 p1 80 χ^2 / ndf 3.365e+04 / 18 -0.4632 ± 0.002918 p1 0.7598 ± 0.0002661 60 40 Energy threshold: 0.5 MIP 20 20 80 100 120 40 60 140 Incident Particle Energy / GeV

Hadron Response in HCAL (Estimator via Scintillation)

- A global linear curve <u>can not</u> well calibrate the hadronic response
- Separate energy calibrations for low and high energy regions
 - Not good: >20% difference for linear slopes at low/high regions

Energy deposition + scintillation process: "partial" digitisation included

HCAL Energy Resolution (Estimator via Scintillation)

- Energy deposition: non-Gaussian distributions
 - Significant difference between RMS and sigma
- Energy resolution: not exactly follow $1/\sqrt{E(GeV)}$ curve
- Large constant term: >5%

Energy estimator with scintillation and Cherenkov

Geant4 10.05.p01

- Use both scintillation + Cherenkov light as energy estimator
 - Significantly improve response linearity and energy resolution

- Good linear response resumed with event-level corrections
- Deviations from the linear curve: to be evaluated

- Energy deposition: close to Gaussian distributions
- Energy resolution: follows $1/\sqrt{E(GeV)}$ curve
- Reasonable constant term

- Comparison of energy estimators
 - Cherenkov, scintillation and combined (S+C)

- Low energy: scintillation as the best energy estimator
- High energy: scintillation + Cherenkov combined the best

• EM fraction vs. incident energy: measured by Scintillation/Cherenkov light

Summary for hadronic performance studies

- Hadronic performance studies with Geant4
 - Synergies for new concepts: PFA-oriented crystal and scintillating glass calorimeters
 - Due to intrinsic hadronic shower behaviors: non-Gaussian fluctuations
 - Homogeneous calorimeter alone does not naturally guarantee good hadronic performance
 - In contrast to the EM shower performance
 - Energy sampling fraction is a major aspect to improve hadronic performance, but not the only one
 - Studies on the potentials of "dual readout" technique with homogeneous structure
 - Hadronic energy resolution can achieve good linearity and resolution ($\sim 20\% / \sqrt{E(GeV)}$)
 - Lower energy threshold is (always) favored for better performance
 - Plenty of room to keep threshold low, given relatively high light yield per crystal/glass cell
- Discussions and plans
 - Plan to evaluate the "software compensation" potentials for crystal/scintillating glass
 - To establish the link among energy threshold, tile design and properties of crystal and glass

Outline

- Hadronic performance with a homogeneous calorimeter
 - Motivation: abundant hadrons in jets \rightarrow hadronic performance is a key
 - Method: single hadron studies with Geant4 full simulation
 - Key performance: response linearity and energy resolution
- PFA crystal calorimeter: development status
 - With a major focus on the hardware development
 - SiPM characterisation
 - SiPM-crystal unit: performance
 - Small-scale crystal prototype

Characterizations of SiPMs with laser

Baohua Qi (IHEP)

- Motivation: SiPM with a large dynamic range
 - SiPMs with large size and high pixel density \rightarrow the thermal noise is significant
 - Pico-second laser for single photon spectrum
- Laser test stand setup
 - 405nm picosecond laser, collimator
 - Neutral density filter (0.1% transmittance) to reduce laser intensity

SiPM option: HPK and NDL

• NDL SiPM: high pixel density (small pixel pitch) is a promising candidate for large dynamic range

HPK S13360-6025PE

NDL EQR06 11-3030D-S

NDL EQR15 11-6060D-S

SiPMs: single photon spectrum

Single photon spectrum of DUTs

NDL EQR15 11-6060D-S

S/N =

Mean_{1p.e.}

- Criteria for SiPMs: pixel size, gain, price, capability of single photon detection...
- NDL EQR06 series with 6 μ m pixel and 3imes3 mm² active area
 - \times 4 more pixels than 25 μ m HPK one
 - Narrower pulse shape (~10 ns)
 - Half signal to noise ratio

Gain crosscheck:

• $7 \times 10^5 / 8 \times 10^4 \approx 70.03 / 8.07$

- Too many thermal noise signals
- Unstable baseline
- Single photon calibration failed
- To be discussed with BNU/NDL

BGO crystal bar: energy resolution

- Experiment setup was upgraded recently
 - 662 keV gamma form ¹³⁷Cs, 1D moveable stage
 - ~5 mm spread of gamma source
 - $400 \times 10 \times 10$ mm³ BGO crystal bar, ESR wrapping
 - $3 \times 3 \text{ mm}^2$ SiPMs with 25 μ m pixel, air coupling, double-sided readout

• Energy resolution for 662 keV gamma: ~11.2%

Radioactive source test of BGO crystal: response uniformity

• 1D uniformity fine scan: 662 keV gamma for ¹³⁷Cs

- Some discrepancy observed between measurement and simulation
 - Asymmetric pattern: relatively low response near one side
- Further repeatable measurements
 - SiPM-crystal coupling, radioactive source collimator, crystal side surface...

Simulation of 1D uniformity: reminder

- Geant4 optical simulation
 - A single BGO crystal bar wrapped with ESR reflector
- Physics processes
 - Scintillating & Cherenkov
 - Boundary processes and absorption
 - SiPM modelling: geometry and response (PDE)

~10% nonuniformity

6mm

Substrate Sensor Epoxy

• Simulation predicts ~10% non-uniformity

z- end

SiPM

- >1000 photons detected per MIP
- Calibration scheme can correct this non-uniformity
- Implement this 1D uniformity curve in the simulation to evaluate the impacts to performance

Air gap

1GeV muon

Crystal bar

ESR wrapping

z+ end

Response uniformity of crystal ECAL module

- Simulation setup
 - $10 \times 10 \times 400 \text{ mm}^3 \text{ BGO crystal Bar}$
 - Crossed bar, $40 \times 40 \times 60$ module
 - 1 GeV muon, 2D uniformity scan
 - Response has been parameterized (simulated without optical process)

- MIP Response of four corners is higher
- 2D non-uniformity lower than 10%
- Calibration constants depend on hit positions
 - Good reconstruction algorithm is required to get precise position resolution

Simulation: impacts of response uniformity

- Impact on energy resolution
 - 1-100 GeV electron
 - 3×3 modules are used to prevent energy leakage
 - Digitization and energy calibration are implemented
 - Energy resolution = Mean/StdDeV

Incident particles randomly hit this area of the middle module

- Non-uniformity at ~10% level → significant energy loss in reconstruction
- Severe distortion of energy resolution
 - Major contribution to constant term
- Response non-uniformity requires calibration
 - Set requirements on calibration precision and good reconstructed positioning precision

Small-scale module design: ongoing efforts

- Motivations: crystal module development
 - EM shower profiles are intrinsically compact
 - e.g. $R_M = 2.26$ cm for BGO
 - Small-scale modules is sufficient for EM showers
 - Crucial to have beam tests for system-level studies
 - Identify critical questions/issues for the large-scale detector design
 - Evaluate performance with data and to validate simulation
- Module design: crystal module ($12 \times 12 \times 12$ cm³)
- Ongoing studies for future beam tests

A dummy crystal matrix with 3D printed structure;: quite useful for mechanics design

 6×6 crystal matrix

 6×6 crossed crystal bar

• Beam test setup: plan to use two modules for sufficient longitudinal depth (21.4 X₀)

Small-scale crystal module: hardware and performance

- Energy region in the simulation: 1-10 GeV
 - DESY: 1-6 GeV electrons; CERN PS: 1-15 GeV electrons
 - For higher energy region >10 GeV: combined tests with an HCAL prototype
- A critical issue: a large dynamic range for crystal+SiPM unit
 - BGO light yield is one key parameter
 - Had meetings with SIC-CAS: possible to "tune" BGO light yield; plan for further R&D

Geant4 full simulation: "Tuning" BGO light yield would largely improve the EM response linearity

Summary for PFA crystal ECAL development

- Detector design and performance
 - SiPM characterization: laser calibration
 - ¹³⁷Cs tests on long crystal bar: energy resolution & response uniformity
 - Simulation studies: single bar \rightarrow crystal module
 - Small-scale detector module design efforts
- Prospects for other topics: ongoing efforts
 - Optimizing ArborPFA for crystal calorimeter
 - Reconstruction software dedicated to long crystal bars
 - Addressing key issues on the crystal module design

Current and future conferences

- Contributions on crystal ECAL + scintillating glass HCAL
- CALICE collaboration meeting in Valencia in April 20-22
 - Well presented and had fruitful discussions
 - Along with talks on ScECAL + AHCAL prototypes
- CALOR2022 in Sussex in May 16-20
 - Abstract approvals received
 - Along with other abstracts on ScECAL + AHCAL prototypes
- ICHEP2022 in Bologna in July 6-13
 - Two abstracts submitted

Backup

Yong Liu (liuyong@ihep.ac.cn)

A few more words on methodology

- Crucial: hadrons in scintillator-based calorimeters
 - Within the <u>CEPC 4th concept detector</u>: crystal ECAL + scintillating glass HCAL
- In this simulation study
 - Focus on intrinsic performance
 - Not consider shower leakage effects at this stage
 - Reality: longitudinal (limited depth), transverse (e.g. crystal gaps, dead materials)

4/22/2022

Hadronic energy resolution: reminder

- Scenarios: varying thickness of scintillating glass tiles and steel plates
 - Extraction of stochastic and constant terms
 - Sampling calorimeter → Homogeneous calorimeter (rightmost points)

- Energy threshold has a significant impact on the energy resolution
- With the 0.5 MIP threshold, resolution will not be improved when glass thicker than $\sim 0.08\lambda_I$
- Higher threshold also significantly degrades the constant term
- Lower threshold would always be desirable for better resolution

MC samples with K_L^0

Yong Liu (liuyong@ihep.ac.cn)

Plots by Dejing Du (IHEP)

• Categorize energy depositions: EM, hadronic, invisible

Energy threshold: 0

Energy threshold: 0.5 MIP

Energy sum

e/h ratio: event level

