SM and EFT measurements at the LHC - recent results from ATLAS and CMS

<u> 李冰 (Bing Li)</u>

山东大学 (Shandong University) CLHCP 2022, Nanjing, China Nov. 23 - 27, 2022

SM measurements at the LHC

- * Precision measurements of SM processes provide stringiest test of the SM at high energy
- * Observation of rare SM processes not accessible before LHC
- * Important background when searching for new physics

. . .

Coupling constants Fermion, boson interactions Higher order corrections Parton density

All public results can be found here ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome</u> CMS: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>

The current status

SM measurements at the LHC cover a lot of physics processes

Outline

- Jet measurements
- * Single boson (+jets) measurements
- Multi-boson (+jets) measurements
- Exclusive production

- Could only focus on the most recent results
- * See more detailed presentations in the TeV parallel sessions

Jet measurements

- * Important inputs to PDF fit
 - > Several 7 and 8 TeV results already included in PDF fits
 - > Recent results are not yet included
- * Precise measurements are needed for MC tuning
- Sensitive to the strong coupling constant

Inclusive jet measurements

JHEP 02 (2022) 142 JHEP 05 (2018) 195

* Double-differential cross section measurement, as a function of jet pT and rapidity

Multi-jet measurement

- * Jet multiplicity and transverse momentum measurement, compared to LO and NLO predictions
- * Jets with pT > 50 GeV and are produced in association with a high-pT dijet system

李冰

NLO modeling reasonable well in low Njets LO modeling are not quite good

SMP-21-006

(Note normalization factors are applied in the plots)

2022/11/24

JHEP 01 (2022) 177

Multi-jets from double-parton scattering

李冰

- Multi-jet final states are not very well modeled nor understood, indicating possible additional treatment needed
- Apart from single-parton scattering (SPS), the double-parton scattering (DPS) also could contribute to multi-jet final state
- * A recent measurement of DPS using four-jet events

2022/11/24

MC Model	Tune	$f_{ m DPS} \pm ({ m stat}) \pm ({ m syst}) \; (\%)$		
	_	Full tune	Hard MPI removed	Inherent DPS
PYTHIA8	CP5	$3.77\pm0.08{}^{+0.45}_{-0.68}$	$6.34\pm0.07{}^{+0.32}_{-0.57}$	$2.57\pm0.11{}^{+0.36}_{-0.62}$
PYTHIA8+VINCIA	Standard PYTHIA8.3	$2.40\pm0.07^{+0.41}_{-0.68}$	$3.84\pm0.07{}^{+0.34}_{-0.63}$	$1.44\pm0.10{}^{+0.37}_{-0.65}$
PYTHIA8	CDPSTP8S1-4j	$-1.30\pm0.08{}^{+0.39}_{-0.69}$	$3.06\pm0.07{}^{+0.28}_{-0.62}$	$4.36\pm0.11{}^{+0.34}_{-0.66}$
HERWIG7	CH3	$3.72\pm0.07{}^{+0.38}_{-0.68}$	$6.28\pm0.08{}^{+0.29}_{-0.58}$	$2.56\pm0.11{}^{+0.33}_{-0.63}$
HERWIG7	SoftTune	$2.67\pm0.07^{+0.42}_{-0.71}$	$4.85\pm0.08{}^{+0.31}_{-0.52}$	$2.18\pm0.11{}^{+0.36}_{-0.61}$
MadGraph5_amc@nlo LO 2 $ ightarrow$ 2, 3, 4, pythia8	CP5	$2.50\pm0.08{}^{+0.38}_{-0.69}$	$5.14\pm0.08{}^{+0.30}_{-0.56}$	$2.64\pm0.11^{+0.35}_{-0.62}$
MadGraph5_amc@nlo LO 2 \rightarrow 2, 3, 4, Pythia8+Vincia	Standard PYTHIA8.3	$2.55\pm0.09{}^{+0.38}_{-0.66}$	$5.23 \pm 0.08 {}^{+0.27}_{-0.53}$	$2.68\pm0.12^{+0.33}_{-0.60}$
MadGraph5_amc@nlo NLO 2 \rightarrow 2, pythia8	CP5	$7.13 \pm 0.08 {}^{+0.28}_{-0.42}$	$11.45\pm0.08{}^{+0.22}_{-0.27}$	$4.32\pm0.11^{+0.25}_{-0.36}$
Powheg NLO $2 \rightarrow 2$, Pythia8	CP5	$4.77\pm0.08{}^{+0.32}_{-0.64}$	$10.89\pm0.08{}^{+0.24}_{-0.48}$	$6.12\pm0.11^{+0.28}_{-0.53}$
POWHEG NLO $2 \rightarrow 3$, PVTHIA8	CP5	$5.40\pm0.07^{+0.36}_{-0.67}$	$6.51\pm0.07^{+0.29}_{-0.51}$	$1.11\pm0.10{}^{+0.33}_{-0.59}$

DPS contributions can not be ignored in such phase space, and need better modeling

Single boson measurements

- Precision measurement of the W and Z boson, as well as the W/Z + jets processes
- * Sensitive to QCD, PDF etc
- * Often the large background when measuring other processes and searching for new physics

Z boson invisible width

SMP-18-014

Indirect constraint of Z invisible width by LEP lineshape measurement to 1.5 MeV.
 Direct measurement using Z + ISR photon is at 16 MeV

New CSM result extract the Z invisible width by measuring the pT(miss) + jets, Z + jets and e/m + jets.

W decay branching fractions PRD 105 (2022) 072008

- Test of the lepton flavor universality, where several hints of deviations from SM have been reported in the past years
- * Events are categorized on lepton multiplicity and flavor, jet and bjet multiplicity

W boson mass

- * Key observable in the SM EW fit
- Need extremely good understanding of the detector and theory modeling
- There is ongoing effort from the LHC/TeVatron
 Electroweak WG towards combination
 - Understand the theoretical uncertainty correlations between different measurements
 - Angular coefficients of W and Z production in ResBos1 differ from more recent calculations

CERN-LPCC-2022-06/FERMILAB-TM-2779-V

Z + jets measurements

2205.02597

SMP-19-009

SMP-21-003

- * High precision measurements covering a large range up to ≥ 8 jets and probing jets beyond 1 TeV
- Provide critical test of QCD calculations

20000000

Z + heavy flavor jets

- Cross-section measurements in both flavor-inclusive and doubly b-tagged region (2 small-R jets within 1 large-R jet)
- Important test of QCD in kinematic and flavor configurations relevant to several Higgs and BSM searches

NLO MadGraph5_aMC@NLO + Pythia8 describes data well

2204.12355

2-tag region limited by data statistic

- Shape all look ok
- > 4FNS (4-flavor number scheme) significantly underestimate the rate, and 5FNS is favored

Z + jets double differential measurements

* Differential cross section in the pT(ll) and lepton angular variable φ_{η}^{*} are measured in different m₁₁ region High mass events are also used to measure forward-

backward asymmetry

Results are used to set limit on new physics with additional gauge bosons

2022/11/24

15

Multi-boson production

- Measurement of multi-boson productions at LHC is important to test the validity of the SM at TeV scale
 - Many precision differential measurements
 - VBF/S processes with relative lower cross-section, being key process to probe the mechanism of electroweak symmetry breaking (EWSB)
- Involve with Triple or Quartic Gauge
 Couplings (T/QGCs)
 - To look for vector boson self-couplings
 - Probe new physics through deviations from SM couplings
- * EFT interpretation $\mathcal{L}_{\text{SMEFT}} \approx \mathcal{L}_{\text{SM}}^{(4)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \sum_{i} \frac{c_j^{(8)}}{\Lambda^4} O_j^{(8)}$
- A way to search for high mass resonance decaying to VV final state

2022/11/24

$Z\gamma$ + jets production ATLAS-CONF-2022-047

- * Z decays leptonically, and enhanced in ISR region by requiring $m_{ll} + m_{ll\gamma} > 182 \text{ GeV}$
- High statistical and high precision channel to study additional QCD radiation in the multiboson final states. Total uncertainty at 4% to 10% level
- Compared to several MC generators at different precisions, and in general good agreement

EW Z(vv)γjj production

Events

10

10²

10

1.25

Data / Pred.

2208.12741

- Recent ATLAS results focusing on high pT region, sensitive to aQGC *
- $Z\gamma$ QCD CR1: used to estimate QCD yield *
- $Z\gamma$ QCD CR2: used to check the m_{ii} modelling *
- BDT used to extrapolate EW signal *

Coefficient	$E_{\rm c}$ [TeV]	Observed limit [TeV ⁻⁴]	Expected limit [TeV ⁻⁴]
f_{T0}/Λ^4	1.7	$[-8.7, 7.1] \times 10^{-1}$	$[-8.9, 7.3] \times 10^{-1}$
f_{T5}/Λ^4	2.4	$[-3.4, 4.2] \times 10^{-1}$	$[-3.5, 4.3] \times 10^{-1}$
f_{T8}/Λ^4	1.7	$[-5.2, 5.2] \times 10^{-1}$	$[-5.3, 5.3] \times 10^{-1}$
f_{T9}/Λ^4	1.9	$[-7.9, 7.9] \times 10^{-1}$	$[-8.1, 8.1] \times 10^{-1}$
f_{M0}/Λ^4	0.7	$[-1.6, 1.6] \times 10^2$	$[-1.5, 1.5] \times 10^2$
f_{M1}/Λ^4	1.0	$[-1.6, 1.5] \times 10^2$	$[-1.4, 1.4] \times 10^2$
f_{M2}/Λ^4	1.0	$[-3.3, 3.2] \times 10^1$	$[-3.0, 3.0] \times 10^1$

EW W(lv)γjj

- More observation of EW VVjj production
- * New results from CMS with 6.0σ for Wyjj
- Cross sections agree well with SM predictions

Several differential cross section measurements are also available

Expected. limit	Observed. limit	Ubound
$-5.1 < f_{M0} / \Lambda^4 < 5.1$	$-5.6 < f_{M0} / \Lambda^4 < 5.5$	1.7
$-7.1 < f_{M1} / \Lambda^4 < 7.4$	$-7.8 < f_{M1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M2}/\Lambda^4 < 1.8$	$-1.9 < f_{M2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M3}/\Lambda^4 < 2.5$	$-2.7 < f_{M3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M4} / \Lambda^4 < 3.3$	$-3.7 < f_{M4}/\Lambda^4 < 3.6$	2.3
$-3.4 < f_{M5}/\Lambda^4 < 3.6$	$-3.9 < f_{M5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M7} / \Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T0}/\Lambda^4 < 0.51$	$-0.47 < f_{T0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T1}/\Lambda^4 < 0.31$	$-0.31 < f_{T1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T2}/\Lambda^4 < 0.92$	$-0.85 < f_{T2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{T5}/\Lambda^4 < 0.31$	$-0.31 < f_{T5} / \Lambda^4 < 0.33$	2.6
$-0.23 < f_{T6}/\Lambda^4 < 0.25$	$-0.25 < f_{T6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T7} / \Lambda^4 < 0.68$	$-0.67 < f_{T7} / \Lambda^4 < 0.73$	3.1

$mW\gamma$ used to set limit

Used in fit to extrapolate the EW $W_{\gamma jj}$ process

EW W+W-(lvlv)jj

- New results from CMS with 5.6σ for WWjj in the opposite-sign channel
- * DNN is used to separate signal and background

*

2022/11/24

Measured cross section agrees well with SM predictions

DNN input variables

Variable	Description
m _{jj}	Invariant mass of the two tagging jets pair
$\Delta \eta_{ m jj}$	Pseudorapidity separation between the two tagging jets
$p_{ m T}^{{ m j}_1}$	p_{T} of the highest p_{T} jet
$p_{ m T}^{{ m j}_2}$	p_{T} of the second-highest p_{T} jet
$p_{\mathrm{T}}^{\ell\ell}$	$p_{\rm T}$ of the lepton pair
$\Delta \phi_{\ell\ell}$	Azimuthal angle between the two leptons
Z_{ℓ_1}	Zeppenfeld variable of the highest $p_{\rm T}$ lepton
Z_{ℓ_2}	Zeppenfeld variable of the second-highest $p_{\rm T}$ lepton
$m_{\mathrm{T}}^{\ell_1}$	Transverse mass of the ($p_{\mathrm{T}}^{\ell_1}$, $p_{\mathrm{T}}^{\mathrm{miss}}$) system

<u>SMP-21-001</u>

李冰

WZ polarization

- Longitudinal component is critical to understand the Higgs mechanism and probe VBS unitarization
- * ATLAS reports the first measurement of joint polarization, with significance of the double-longitudinal component of 7.1σ

Both ATLAS and CMS provide several differential cross section measurements CMS also reports the EFT limit

Parameter	95% CI, exp. (TeV $^{-2})$	95% CI, obs. (TeV $^{-2})$	Best fit, obs. (TeV^{-2})
$c_{ m w}/\Lambda^2$	[-1.8, 2.1]	[-3.1, 0.3]	-1.6
$c_{ m www}/\Lambda^2$	[-8.5, 8.5]	$\left[-4.2,14.2\right]$	5.5
$c_{ m b}/\Lambda^2$	[-200, 180]	[10, 380]	200
$\widetilde{c}_{ m www}/\Lambda^2$	[-3.3, 4.1]	[-4.0, 3.6]	-0.6
$\widetilde{c}_{ m w}/\Lambda^2$	—	—	—
1			

WWW production Phys. Rev. Lett. 129 (2022) 061803

- Directly probe the gauge boson self-interactions
- Events with 2 same-sign leptons and two jets, or three charged leptons are considered
- BDT used to discriminate between signal and background
- ***** Observation with 8.0σ

Measured cross section approximately 2.6σ higher than the SM prediction at NLO QCD and LO EW

22

Exclusive production of $\gamma\gamma \rightarrow \tau\tau$ from Pb+Pb collision

- * Photon induced ττ production is sensitive to anomalous magnetic moment
- * Both ATLAS and CMS have observed clear exclusive production of $\gamma\gamma \rightarrow \tau\tau$
- * One muon is required in the final state $a_{\ell} = \frac{g_{\ell} 2}{2} = \frac{\alpha}{2\pi} + \ldots \approx 0.0012$

arXiv:2204.13478

arXiv:2206.05192

CMS $a_{\tau} = 0.001^{+0.055}_{-0.089}$ at a 68% confidence level.

Summary

- * SM measurements at the LHC covers a large range of cross sections from many physics processes
 - > Precision measurements over a wide kinematic ranges with many observables
 - First observation of several rare SM processes
 - Looking for possible deviations from SM
- * LHC Run 3 already started and will give further opportunities

24

Backup

- Multi-jet production
 - > ATLAS: <u>ATLAS-CONF-2022-056</u>
 - > CMS: JHEP 01 (2022) 177, SMP-21-006, JHEP 02 (2022) 142, JHEP 01 (2022) 188
- * Single boson (+jets) production
 - > ATLAS: <u>2205.02597</u>, <u>2204.12355</u>, <u>ATLAS-CONF-2022-065</u>
 - CMS: <u>SMP-18-014</u>, <u>SMP-20-003</u>, <u>SMP-19-009</u>, <u>JHEP 08</u> (2022) 063, <u>PRD 105</u> (2022) 072008, <u>SMP-21-003</u>
 - LHC-TeVatron W mass combination: <u>CERN-LPCC-2022-06/FERMILAB-TM-2779-V</u>
- * Multi boson (+jets) production
 - > ATLAS: 2211.09435, 2208.12741, Phys. Rev. Lett. 129 (2022) 061803, ATLAS-CONF-2022-047,
 - > CMS: <u>SMP-21-001</u>, JHEP 07 (2022) 032, PLB 834 (2022) 137438
- PDF constraint
 - > ATLAS: Eur. Phys. J. C 82 (2022) 438
- Elastic cross section
 - > ATLAS: 2207.12246
- Exclusive production
 - > ATLAS: <u>2204.13478</u>,
 - > CMS: <u>arXiv:2206.05192</u>