Recent EW and QCD results from LHCb

The 8th China LHC Physics Workshop November 24, 2022

尹航 华中师范大学

- Introduction
- - Z boson production cross section
 - Z angular coefficient measurement
 - \blacksquare Z + c measurement
 - W boson mass measurement
- Conclusions

Outlines

• Selected results from LHCb published W and Z boson measurements

JHEP 07 (2022) 26

More details can be found in Jiangiao Deng's talk: Link to the talk (this afternoon)

PRL 129 (2022) 091801

PRL 128 (2022) 082001

JHEP 01 (2022) 036

- Designed for the heavy flavour physics, with $2 < \eta < 5$

LHCb detector

JINST 3 (2008) S08005 Int. J. Mod. Phys. A30 (2015) 1530022

Extended to EW measurements: excellent performance of tracking and muon detector

EW production @LHCb

• The Bjorken-x value of interacting parton are correlated with EW boson production Rapidity: $y = \frac{1}{2} \ln \frac{x_1}{x_2}$

Large rapidity: either very large or very small $x_{1,2}$

Phys. Rev. D93, 074008 (2016)

Z boson production cross-section measurement Dataset: 2016-2018, pp collision data @ 13 TeV, 5.1 fb⁻¹

- $Z \rightarrow \mu^+ \mu^-$ events:

 - Event selection: 796k candidates

$$\mu$$
 Z
 $p_{\rm T} > 20 \,{\rm GeV}/c$ $60 < M_{\mu^+\mu^-} < 12$
 $2 < \eta < 4.5$
 $\sigma_P/P < 10\%$

• Trigger: at least one μ must fire single muon trigger decision stages

5

Z boson production cross-section measurement

- Background contributions: 1.5%
 - Heavy flavor: semileptonic decay, (1.0 ± 0.1) %
 - background dominated samples
 - Misidentified hadron:
 - Remove overlap with Heavy flavor
 - Other physics process:

• $Z \rightarrow \tau^+ \tau^-, W^+ W^-, W^\pm Z, t\bar{t}$

Data driven method: reverse isolation and vertex fit quality cuts to get

Analysis strategy

- LHCb Fiducial region:
 - Muons within $2 < \eta < 4.5$, $p_T > 20$ GeV/c
 - $60 < M_{\mu\mu} < 120 \, {\rm GeV}/c^2$
- Cross-section measured in bin of Z boson rapidity, p_T , and ϕ^*

$$\frac{d\sigma_{Z \to \mu^+ \mu^-}}{dy}(i) = \frac{N_Z(i) \cdot f_{FS}^Z}{\mathcal{L} \cdot \varepsilon_{REC}^Z(i) \cdot f_{FS}}$$

Corrected to the predictions

: direct comparison of the results and different

- Luminosity determination: 2%

Integrated cross-sectio	n
Source	$\Delta\sigma/\sigma$ [%]
Statistical	0.11
Background	0.03
Alignment & calibration	
Efficiency	0.77
Closure	0.06
\mathbf{FSR}	0.04
Total Systematic (excl. lumi.)	0.77
Luminosity	2.00
Total	2.15

Systematic uncertainties

• Tracking reconstruction: for each muon is determined to be 0.47%

Differential cross-section: 1-D

- Reasonable agreements between data and predictions
- Predictions are systematically smaller than the measured results in the lower rapidity region
 - Same behaviours are seen in 2015 LHCb data-set

Differential cross-section: 1-D

- Measured cross section in different intervals of Z boson ϕ^*

• ResBos describes the low ϕ^* data, but tensions are seen in the large ϕ^* region

Double differential cross-section

First double differential cross-section measurement in the forward region

Reasonable agreement with RESBOS predictions

 p_T^L

In the high p_T region, ResBos is only up to NLO

Integrated cross-section

 $\sigma(Z \to \mu^+ \mu^-) = 196.4 \pm 0.2$ (stat.) ± 1.6 (syst.) ± 3.9 (lumi) pb

Integrated cross-section

- Stat. Uncertainty Syst. Uncertainty (w/o Lumi) **Total Uncertainty**
- POWHEG+NNPDF3.1 POWHEG+CT18 ResBos+CT18
- FEWZ+CT14
- FEWZ+NNPDF3.0
- FEWZ+MMHT14
- FEWZ+ABM12
- LHCb 2015 220 230 $\sigma(Z \rightarrow \mu^+ \mu^-)$ [pb]

Good agreements between data and predictions are seen

Angular coefficient measurement of Z boson

- are measured
- A_2 is sensitive to the transverse momentum dependent PDFs (TMD)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\mathrm{d}\phi} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin2\phi + A_6\sin2\theta\sin\phi + A_7\sin\theta\sin\phi + A_7\sin$$

 A_4 sensitive to $\sin^2 heta_W$ In pQCD, A_5 to A_7 near to 0

• To further encode the Z production mechanism, angular coefficients of Z boson

• Measured A_2 in the low p_T region, using events in different mass regions

Analysis strategy

• Event selection:

- Same data-sets as Z boson cross-section measurement
- Similar event selections as Z production cross-section measurement
- Additional cuts to further suppress background contributions
 - Muon isolation requirement
 - Originate from a common primary pp interaction vertex

Analysis strategy

- Background contribution: ~0.2%
 - Removed with negative weights in the fit •
- An iterative method: stable after four iterations
 - - Introduced and used by the Babar collaboration •
 - Extensively used in the heavy-flavour studies 0
- Several closure tests

Phys. Rev. Lett. 87 (2001) 241801

Phys. Rev. D 71 (2005) 032005

Z boson p_T dependent results

- Measured results are at Born level in QED
- Dominated uncertainty: statistical uncertainty
- Compared with various predictions
 - POWHEG+PYTHIA \bullet
 - DYTurbo •
 - RESBOS \bullet
 - PYTHIA8+LHCb tune

 $f \propto (1 + \cos^2 \theta) + \frac{1}{2}A_0(1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{1}{2}A_2 \sin^2 \theta \cos 2\phi$ $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta \mathrm{d} \phi}$ $+A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin2\phi + A_6\sin2\theta\sin\phi + A_7\sin\theta\sin\phi,$

Results in low ZpT region

- Use measured A_2 to probe Boer-Mulders TMD PDFs
- In different mass regions: 50-75 GeV/c², 75-105 GeV/c², 105-120 GeV/c²
- None of predictions include nonperturbative spin-momentum correlations

PRL 129 (2022) 091801

17

Intrinsic Charm

- Two types of parton contributions
- The extrinsic quarks/gluons:
 - •
- The intrinsic quarks/gluons:
 - \bullet found state hadron dynamics
- Intrinsic charm:
 - Long-lived charm component: longer than the interaction time of the probe ullet
 - BHPS model: non-negligible \bullet

Generated on a short time scale in association with a large transverse-momentum reaction

Exist over a time scale independent of any probe momentum, they are associated with the

component (independent of PDFs)

Probe intrinsic charm at LHCb

• IC may enhance c-jet production at high y(Z)

• Challenges: *c*-jet tagging and its efficiency

Ratio measurement: $Z_j^c = \sigma(Zc)/\sigma(Zj) = \frac{N_c^{tag}}{N_i \times \varepsilon_c^{tag}}$

- - Inputs: mass, momentum, position, direction •
 - ≤ 4 tracks: to reject *b*-hadron decays

Uncertainties

Source

c tagging DV-fit templates Jet reconstruction Jet $p_{\rm T}$ scale & resolution

Total

Relative Uncertainty

	$6\!-\!7\%$	
	3-4%	
	1%	
ion	1%	
	8%	

Z + c results

- The measured result has a sizable enhancement at forward Z rapidity region
- Consistent with LFQCD + IC
- Indicate a valence-like IC component in the proton wave function

Measurement of the Wboson mass

• m_W is related to other fundamental parameters in SM EW sector

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta)$$

- Radiative corrections (Δ) dominated by top quark and Higgs loop, also can be affected by new physics contributions
- The LHCb measurement is complementary to the ATLAS and CMS results

PDFs uncertainty could partially cancel in the combination of LHC measurements

Eur. Phys. J. C75 (2015) 601

Analysis strategy

- 2016 data-set: $W \rightarrow \mu \nu$ decays
- Muon q/p_T distribution is used to measure m_W
 - Detector response
 - Muon momentum measurement
 - Muon reconstruction and selection efficiency
 - Backgrounds
 - EW boson production
 - Wp_T modelling, PDFs, boson polarisation, electroweak corrections
- Simultaneously fitting the W and Z data: Z boson ϕ^*

24

Source	Size
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Momentum scale and resolution modelling	ç 7
Muon ID, trigger and tracking efficiency	6
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

Systematic uncertainties

PDFs: Average of NNPDF31, CT18 and MSHT20 p_T model: Envelope from five different models A_i : scale variation

QED: Envelope of the QED FSR from PYTHIA8, Photos, and Herweig7

Efficiencies: statistical uncertainties, details of method (e.g. binning, smoothing)

MeV

Results

- The determined m_W with the NNPDF31_nlo_as_0118 PDFs set
 - $\chi^2/dof = 105/102$
- Combined results obtained with NNPDF3.1, CT18, and MSHT20 PDFs sets:
 - $m_W = 80354 \pm 23(\text{stat.}) \pm 10(\text{exp.}) \pm 17(\text{theory}) \pm 9(\text{PDF})$
 - Analysis with full data-sets is ongoing

Parameter	Value
Fraction of $W^+ \to \mu^+ \nu$	0.5288 ± 0.0006
Fraction of $W^- \to \mu^- \nu$	0.3508 ± 0.0005
Fraction of hadron background	0.0146 ± 0.0007
α_s^Z	0.1243 ± 0.0004
$lpha_{s}^{W}$	0.1263 ± 0.0003
$k_{\mathrm{T}}^{\mathrm{intr}}$	$1.57\pm0.14\mathrm{GeV}$
$\bar{A_3}$ scaling	0.975 ± 0.026
m_W	$80362\pm23\mathrm{MeV}$

Conclusions

- LHCb has an extensive program on W/Z boson production and properties
 - Z boson production cross-check measurement
 - Intrinsic charm study •
 - Measurement of Z boson angular coefficients •
 - Precise measurement of the W boson mass
- The LHCb results could provide unique information for the PDF global fitting
 - The W/Z results are complementary to that of ATLAS and CMS.
 - Sensitive to large and small Bjorken-x

Stay tuned for new results!

Backup

• Probe same physics as Z boson p_T , but smaller uncertainty

•
$$\phi_{\eta}^* = \tan\left(\phi_{acop}/2\right)\sin\theta_{\eta}^*$$

- ϕ_{acop} : acoplanarity angle, $\pi \Delta \phi_{ll}$
- $\Delta \phi_{ll}$: the difference in azimuthal angle, ϕ , between two lepton candidates
- of dilepton system
 - $\cos \theta_{\eta}^* = \tanh[(\eta^- \eta^+)/2]$

ϕ_n^* angle

• θ_n^* : scattering angle of leptons with respect to the proton beam in the rest frame

LHCb W/Z data and PDFs

- in the small *x* region
 - For both u and d quarks

• Strong correlations between Z boson rapidity results measured by LHCb and PDFs

A confirmation from LHCb?

With 300 fb⁻¹ LHCb pp collision data in future

Chinese Phys. C 45 (2021) 023110

Sea quark PDFs

- Recently, the SeaQuest experiment reported new results on the d/\bar{u} PDFs ratio
 - Tensions between SeaQuest result and NuSea result are seen
- The LHCb data will be an ideal input: no uncertainty from nuclear effects

Nature 590, 561 (2021)

General PDFs describes the Parton inside a proton

- One longitudinal freedom: x \bullet
- Quarks are perfectly collinear •
- Transverse moment dependent PDFs
 - Admit a finite quark transverse momentum k_T
 - Provides 3D image of proton in momentum space •
 - Correlation between parton momentum and hadron spin lacksquare

Nucleon/quark polarization

lead	ling	ıg	
twist		unpolarized [U]	lor
tion	U	$f_1 = \bigcirc$ unpolarized	
olariza	\mathbf{L}		$g_1 =$
nucleon po	Т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{V}}$	g_{1T}^\perp :

Boer-Mulders function

D. Boer, P. J. Mulders: Phys. Rev. D 57 (1998) 5780 0

$$h_1^{\perp [\mathcal{C}]}(x,k_T^2) \, \epsilon_T^{ij} k_{Tj} = rac{M}{2} \, \mathrm{F.T.} \, ig \langle P | \, \overline{\psi}
angle$$

- unpolarized hadron
 - A time-reversal odd, chiral-odd TMD PDFs
 - Lead to an azimuthal $\cos(2\phi)$ dependence in Drell-Yan

 $\bar{b}(0) \mathcal{L}_{\mathcal{C}}(0,\xi) \gamma^{i} \gamma^{+} \gamma_{5} \psi(\xi) \left| P \right\rangle \Big|_{\xi^{+}=0}$

• Represents the correlation between quark k_T and transverse spin in an

FSR correction

ResBos with/without PHOTOS

POWHEG with/without PYTHIA : to estimate uncertainty from FSR

Differential cross-section: 1-D

- Measured cross section in different intervals of Z boson p_T

R =

• ResBos describes the low p_T^Z data, but tensions are seen in the middle and large p_T regions

Double differential cross-section

First double differential cross-section measurement in the forward region

Tensions in the large ϕ^* region are seen

 ϕ^*

