

Selected recent heavy flavor results from ATLAS and CMS

Kai Yi

(Nanjing Normal University & Tsinghua University)

Topic I—studies of J/ ψ J/ ψ system at CMS & ATLAS

Near Threshold puzzle

Clean vector-vector (VV) system:

- --excesses when both V has no isospin
- --not clear when one V has isospin extend to other VV system, where V is composed of heavy quark?

IJMPA Vol. 28, No. 18 (2013) 1330020

New Domain of Exotics: All-Heavy Tetra-quarks

• First mention of 4c states at 6.2 GeV (1975): Prog. of Theo. Phys. Vol. 54, No. 2

(Just one year after the discovery of J/ψ)

- First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317
- Many theoretical studies on $(c\overline{c}c\overline{c})$, $(b\overline{b}b\overline{b})$, $(b\overline{b}c\overline{c})$:
 - controversial on existence of bound states below $\eta_b\eta_b$ threshold;
 - consistent on existence of resonant states above $\eta_b\eta_b$ threshold.

《大型强子对撞机实验CMS和 ATLAS 物理研究 》973计划项目 (2007-2011)验收报告

陈和生

中国科学院高能物理研究所 2011年11月19日

双J/ψ的截面测量(CMS)

根据乔从丰建议。Jpsi1, Jpsi2为信号,显著度为5.97.

Jianguo Bian initialized di-J/ψ
cross section analysis

$J/\psi J/\psi$ --Data samples & Event selections

- 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- Blinded signal region: [6.2,7.8] GeV
 based on preliminary investigation on data collected in 2011-2012
- Main selections:
 - Fire corresponding trigger in each year
 - $p_T(\mu) > = 2.0 \text{ GeV}; |\eta(\mu)| < = 2.4; p_T(\mu) (J/\psi) > = 3.5 \text{ GeV} (2017\&2018); p_T(\mu^+\mu^-) > = 3.5 \text{ GeV};$
 - m($\mu^+\mu^-$) in [2.95,3.25] GeV; then constrain m($\mu^+\mu^-$) to J/ ψ mass
 - 4μ vertex probability >0.005
- Signal and background samples produced by Pythia8, JHUGen, HELAC-Onia...

CMS background (BW0 + NRSPS + DPS)

- Most significant structure in first step is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - Inadequacy of our NRSPS model at threshold though one floating parameter?
 - BW0 parameters very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- NRSPS+NRDPS+BW0 as our background

Final CMS model: 3 BWs + Background (null)

Statistical significance based on:

2 In(L₀/L_{max})

	BW1 (MeV)	BW2 (MeV)	BW3 (MeV)
m	6552 ± 10	6927± 9	7287± 19
Γ	124± 29	122± 22	95± 46
N	474± 113	492± 75	156± 56

 χ^2 Prob. = 1% [6.2,7.8] GeV

- BW2[X(6900)] (>9.4 σ) confirmation
- Observation of BW1 ($>5.7\sigma$)
- Evidence for BW3 (>4.1 σ)

Statistical significance only

X(6900) reported by LHCb (Liupan An & Yanxi Zhang)

- In 2020, LHCb reported X(6900) state in $J/\psi J/\psi$ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" X(6700) to interfere with NRSPS background to account for dip
- LHCb agnostic on which one is to be preferred
- What happens if fit CMS data using LHCb models?

Fit with LHCb model I--background+2 auxiliary BWs+ X(6900)

Exp.	Fit	m(BW1)	Γ(BW1)	m(6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905 \pm 11 \pm 7$	$80 \pm 19 \pm 33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24

X(6900) parameters are in good agreement with LHCb LHCb did not give parameters for another 2 BWs

- CMS Data shows a shoulder before BW1
- CMS shoulder helps make BW1 distinct
- Does not describe well dips

- CMS vs LHCb comparisons:
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance due to pseudo-rapidity range)
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events
 - 2X yield @CMS for X(6900)

Fit with LHCb model II—DPS+X(6900)+"X(6700)" interferes with NRSPS

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905 \pm 11 \pm 7$	$80 \pm 19 \pm 33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	$\phantom{00000000000000000000000000000000000$
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886 \pm 11 \pm 11$	$168 \pm 33 \pm 69$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40

All CMS fits presented are not very good:

...other interference scenarios are under study in CMS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7200) region

CMS $J/\psi J/\psi$ result

CMS found 3 significant structures using 135 fb⁻¹ 13 TeV data

$M[BW1] = 6552 \pm 10 \pm 12 MeV$	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5. 7o
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 σ
$M[BW3] = 7287 \pm 19 \pm 5 MeV$	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 σ

- BW2 consistent with X(6900) reported by LHCb
- CMS found two new structures, provisionally named as X(6600), X(7200)
- A family of structures which are candidates for all-charm tetra-quarks!
- Dips in the data show possible interference effects --- Under study
- More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer system easier to understand
- A new window to understand strong interaction

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

Using. $\mathcal{L}=139~\mathrm{fb}^{-1}$ of 13 TeV of ATLAS Run-2 data collected in 2015 to 2018

Search in the 4μ final state through the di- J/ψ and $J/\psi+\psi(2S)$ channels di- $\psi(2S)\to 4\mu$ statistically not accessible with Run-2 data

Signal simulated with JHU: TQ mass = 6.9 GeV, width = 0.1 GeV, spin = 0

Background processes (simulated with Pythia8):

prompt di- J/ψ . Single Parton Scattering (SPS) and Double Parton Scattering (DPS) non prompt di- J/ψ . $b\bar{b}\to J/\psi J/\psi$

"Others" background: single (prompt or non prompt) charmonium plus fake muons, non-peaking background containing no real charmonium candidates

(CRs defined in sidebands and by requiring one charmonium containing a non muon track)

Event selection and signal and control regions:

	Signal region	SPS/DPS control region	non-prompt region					
	Di-muon or tri-muon triggers,							
	Opposite charge	ed muons from the same J/ψ or $\psi(2S)$ v	ertex,					
	Loose muon ID $n^{1,2,3,4}$	$> 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for t	the four muons					
		$\{3.25\}\ \text{GeV}, \text{ or } m_{\psi(2S)} \in \{3.56, 3.80\}\ \text{C}$						
	Loose verte	ex cuts $\chi_{4\mu}^2/N < 40$ and $\chi_{di-\mu}^2/N < 100$						
		$4\mu^{r}$,					
		$\propto \chi_{4\mu}^2/N < 3,$						
w.r.t primary	w.r.t primary vertex closest in z $L_{xy}^{4\mu} < 0.2 ext{ mm}, L_{xy}^{ ext{di-}\mu} < 0.3 ext{ mm},$							
	$m_{\frac{1}{4\mu}} < 7.5 \text{ GeV}$	$7.5 \text{ GeV} < m_{4\mu} < 12.0 \text{ GeV (SPS)}$	$ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$					
	$\Delta R < 0.25$ between charmonia							

SPS mass shape validated Usin. $\Delta R > 0.25$ CR

Fit Models

Unbinned maximum likelihood fits on the four-muon mass spectra < 11 GeV, no ΔR cut

fit signal region $\Delta R < 0.25$ fit control region $\Delta R \ge 0.25$, with transfer factors for background yields from MC or data driven methods

The signal probability density function (PDF) consists of several interfering S-wave Breit-Wigner resonances, convoluted with a mass resolution function

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + i m_i \Gamma_i} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\alpha)$$

no interference with NRSPS (LHCb model)

 $\operatorname{di-}J/\psi$ channel:

models with different numbers of resonances (2 or 3) are compared in terms of χ^2 or toy MC distributions

 $J/\psi + \psi(2\mathrm{S})$ channel:

Model A: same resonances as in di- J/ψ , plus a 4th standalone resonance

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + i m_i \Gamma_i} \right|^2 + \left| \frac{z_3}{x^2 - m_3^2 + i m_3 \Gamma_3} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\alpha)$$

Model B: a single resonance

Results in di- J/ψ channel

 4μ mass distribution from data and background predictions before fit

feed-down from $J/\psi + \psi(2S)$ or higher di-charmonium resonances not included

significance of third resonance: 10σ using LHCb Model I values for 3rd resonance gives similar results LHCb Model II fit (interference with NRSPS) disfavoured based on fit quality

70% worse fit quality for 2-resonance fit _

fitted mass in SR, 3-resonance fit (2 out of 4 degenerate solutions for z_i)

Fitted masses and widths

(GeV)	m_0	Γ_0	m_1	Γ_1
di- <i>I /\u/</i>	$6.22 \pm 0.05^{+0.04}_{-0.05}$	$0.31 \pm 0.12^{+0.07}_{-0.08}$	$6.62 \pm 0.03^{+0.02}_{-0.01}$	$0.31 \pm 0.09^{+0.06}_{-0.11}$
\mathbf{u}_{1} - \mathbf{J}/ψ	m_2	Γ_2	_	_
consistent with LHCb	$6.87 \pm 0.03^{+0.06}_{-0.01}$	$0.12 \pm 0.04^{+0.03}_{-0.01}$	_	_

6.9 GeV resonance confirmed, best fit with 3 interfering resonances, other explanations possible

Results In $J/\psi + \psi(2{ m S})$ channel

 4μ mass distribution from data and background predictions before fit

fitted mass in SR (Model A and Model B)

significance Model A: 4.6σ second resonance (7.2 GeV): 3.2σ

(hint for a 7.2 GeV resonance in LHCb data)

significance Model B: 4.3σ

Fitted masses and widths

(GeV)		m_3	Γ_3
$J/\psi + \psi(2S)$	model A	$7.22 \pm 0.03^{+0.02}_{-0.03}$	$0.10^{+0.13+0.06}_{-0.07-0.05}$
		$6.78 \pm 0.36^{+0.35}_{-0.54}$	

Evidence for an enhancement at 6.9 GeV and a resonance at 7.2 GeV, other explanations possible

What are they—an accident?

Threshold

 $\eta_c(1S)\chi_{c0}(1P)$ $\eta_c(1S)\chi_{c1}(1P)$ $\eta_c(1S)\chi_{c2}(1P)$ $\eta_c(1S)h_{c1}(1P)$ $J/\psi(1S)\chi_{c1}(1P)$ $J/\psi(1S)\chi_{c2}(1P)$

arXiv:2108.04017 [hep-ph]

TABLE 4: The mass-spectra of S and P-wave tetraquark T_{4c} , generated from our model. M_{th} [49] is threshold mass of two mesons. (Units are in MeV)

Λ	$I^{2S+1}L_J$	J^{PC}	$\langle K.E. \rangle$	$E^{(0)}$	$\langle V_C^{(0)} \rangle$	$\langle V_L^{(0)} \rangle$	$\langle V_{SS}^{(1)} \rangle$	$\langle V_{LS}^{(1)} \rangle$	$\langle V_T^{(1)} \rangle$	$V^{(1)}(r)$	M_f	$M_{\rm th}$ [49]
	11 D	1	202.0					0	0	0.0	CFFO	
	$1^{1}P_{1}$	1	363.9		-366.7	337.5	-14.4	0	0	-2.6	6553	-
	$1^{3}P_{0}$	0-+	356.7	320.2	-366.7	337.5	-7.2	-56.9	-43.1	-2.6	6460	6398.1
	$1^{3}P_{1}$	1-+	356.6	320.3	-366.7	337.5	-7.2	-28.4	21.5	-2.7	6554	6494.1
	$1^{3}P_{2}$	2^{-+}	356.6	320.2	-366.7	337.5	-7.2	28.4	-2.1	-2.4	6587	6539.6
	$1^{5}P_{1}$	1	342.4	320.4	-366.7	337.5	7.2	-85.3	-30.2	-2.7	6459	6508.8
	$1^{5}P_{2}$	2	342.2	320.2	-366.7	337.5	7.2	-28.4	30.2	-2.5	6577	6607.6
	$1^{5}P_{3}$	3	342.3	320.3	-366.7	337.5	7.2	56.9	-8.6	-2.5	6623	6653.1
	2^1P_1	$1^{}$	414.7	688.7	-263.4	548.6	-11.2	0	0	-1.6	6925	-
	$2^{3}P_{0}$	0^{-+}	410.0	689.6	-263.4	548.6	-5.6	-46.2	-34.5	-1.7	6851	-
ſ	$2^{3}P_{1}$	1-+	410.0	689.6	-263.4	548.6	-5.6	-23.1	17.2	-1.6	6926	4
	$2^{3}P_{2}$	2^{-+}	410.0	689.6	-263.4	548.7	-5.6	23.1	-3.4	-1.7	6951	-
	2^5P_1	1	398.7	689.5	-263.4	548.6	-5.6	-69.3	-24.2	-1.7	6849	-
	2^5P_2	$2^{}$	398.7	689.5	-263.4	548.6	5.6	-23.1	24.2	-1.5	6944	-
	$2^{5}P_{3}$	3	398.8	689.7	-263.4	548.6	5.6	46.2	-6.9	-1.6	6982	-
	$3^{1}P_{1}$	1	479.8	982.2	-215.5	727.8	-9.3	0	0	-1.1	7221	-
	$3^{3}P_{0}$	$^{0-+}$	475.2	982.7	-215.5	727.7	-4.6	-41.9	-31.0	-1.2	7153	-
	$3^{3}P_{1}$	1^{-+}	475.1	982.6	-215.5	727.7	-4.6	-20.9	15.5	-1.2	7220	4
	$3^{3}P_{2}$	2^{-+}	475.1	982.6	-215.5	727.8	-4.6	20.9	-3.1	-1.0	7243	-
	$3^{5}P_{1}$	1	465.9	982.8	-215.5	727.7	4.6	-62.8	-21.7	-1.2	7150	-
	$3^{5}P_{2}$	2	465.7	982.6	-215.5	727.8	-4.6	-20.9	21.7	-1.1	7236	-
	$3^{5}P_{3}$	3	465.8	982.6	-215.5	727.8	4.6	41.9	-6.2	-1.1	7271	-

- Radial excited p-wave states like J/ψ series?
- $J^{PC}=1^{-+}$? An exotic quantum number!
- Next important step: measure JPC

What are they?

Nucl. Phys. B 966 (2021) 115393

Table 1. Predictions of the masses (MeV) of S-wave fully heavy $T_{4Q}(nS)$ tetraquarks. Only 0⁺⁺ and 2⁺⁺ are considered for $T_{bc\bar{b}\bar{c}}$. The uncertainty is from the coupling constant α_s =0.35±0.05.

T _{4Q} (nS) states	\mathcal{J}^P	Mass(n=1)	Mass(n=2)	Mass(n=3)	Mass(n=4)
$T_{ccar{c}}$	0++	6055_{-74}^{+69}	6555_{-37}^{+36}	6883_{-27}^{+27}	7154_{-22}^{+22}
	2++	6090_{-66}^{+62}	$6566_{-35}^{+34} \\$	6890^{+27}_{-26}	7160^{+21}_{-22}
$T'_{ccar{c}}$	0++	5984_{-67}^{+64}	$6468_{-35}^{+35} \\$	6795^{+26}_{-26}	7066^{+21}_{-22}
$T_{bcar{b}ar{c}}$	0++	12387^{+109}_{-120}	$12911^{+48}_{-51} \\$	$13200_{-36}^{+35} \\$	$13429^{+29}_{-30} \\$
	2++	12401^{+117}_{-106}	12914_{-49}^{+49}	$13202_{-36}^{+35} \\$	$13430^{+29}_{-29} \\$
$T_{bcar{b}ar{c}}^{\prime}$	0++	$12300^{+106}_{-117} $	$12816_{-50}^{+48} \\$	13104_{-35}^{+35}	$13333^{+29}_{-29} \\$
$T_{bbar{b}ar{b}}$	0++	$18475^{+151}_{-169} $	19073_{-63}^{+59}	$19353_{-42}^{+42} \\$	$19566^{+33}_{-35} \\$
	2++	$18483^{+149}_{-168} \\$	$19075_{-62}^{+59} \\$	$19355_{-43}^{+41} \\$	$19567_{-35}^{+33} \\$
$T'_{bbar{b}ar{b}}$	0++	18383^{+149}_{-167}	18976_{-62}^{+59}	19256_{-42}^{+43}	19468_{-34}^{+34}

M[BW1] =
$$6552 \pm 10 \pm 12$$
 MeV
M[BW2] = $6927 \pm 9 \pm 5$ MeV
M[BW3] = $7287 \pm 19 \pm 5$ MeV

- Radial excited S-wave states?
- J^{PC}=0⁺⁺ or 2⁺⁺?
- Next important step: measure JPC

• Other possibilities exist! i.e. threshold effect...

Topic II—
$$B_S \rightarrow \mu^+ \mu^-$$
 at CMS

$B_S \rightarrow \mu \mu at CMS$

Helicity Suppressed

- Rare $b \rightarrow s \ell \ell$ process in SM (10-9)
 - Sensitive to New Physics effects
- Theoretically clean
 - non perturbative contributions are in $B_{(s)}$ decay constant
 - well known from Lattice QCD
- Anomalies in rare B decays
 - 3.1σ LFU violation in R(K)
 - 2-3σ discrepancies in branching fraction and angular observables

Dominant Contributions

Multivariate Analysis

- New multivariate analysis (MVA_B) used to suppress the dominant backgrounds
 - Trained with signal MC and mass sideband data with the XGBoost package (advanced gradient boosting algorithm)
- Most discriminating variables
 - Pointing angles: α_{2D} , α_{3D}
 - Impact parameter and its significance: δ_{3D} , $\delta_{3D}/\sigma(\delta_{3D})$
 - Flight length and its significance: $\ell_{3D}/\sigma(\ell_{3D})$
 - Isolation for B candidate and muons
 - Dimuon vertex quality

$B_s \rightarrow \mu \mu BF Result$

$$\mathcal{B}(\mathrm{B_s^0} \to \mu^+ \mu^-) = \left[3.83^{+0.38}_{-0.36} \; (\mathrm{stat}) \, ^{+0.19}_{-0.16} (\mathrm{syst}) \, ^{+0.14}_{-0.13} (f_\mathrm{s} / f_\mathrm{u}) \right] \times 10^{-9}$$

Alternative using Bs \rightarrow J/ $\psi \varphi$: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left[3.95^{+0.39}_{-0.37} \, (\text{stat}) \, ^{+0.27}_{-0.22} \, (\text{syst}) \, ^{+0.21}_{-0.19} \, (\text{BF}) \right] \times 10^{-9}$

$B^0 \rightarrow \mu \mu BF Result$

Summary of CMS $B_{(S)}$ -> $\mu \mu$

- Studies of rare $B_{(s)} \rightarrow \mu^+ \mu^-$ decays provides a unique tool to explore and understand rare B decay anomalies
 - Theoretically clean
 - Sensitive to the same processes
- CMS finalized analysis of 140 fb⁻¹ data collected during LHC Run-2
 - All results are consistent with SM predictions
- Relative uncertainty on BF($B_s \rightarrow \mu^+ \mu^-$) has been reduced to 11%
 - The best single measurement to date
- Statistical uncertainty dominates
 - Good perspectives for further improvements with upcoming Run-3 data

Stay tuned!

Backup

Effective Lifetime Measurement

- In the absence of CP violation only the heavy Bs state decays into dimuon
 - Different composition of states may be allowed by New Physics.
- Efficiency correction
 - Decay time efficiency derived from MC
 - Corrected by B⁺→J/ΨK⁺ data to mitigate the bias from tight MVA_B requirement.
 - The residual bias and the difference between $B_s \rightarrow \mu\mu$ and $B^+ \rightarrow J/\psi K^+$ are considered as a systematic uncertainty.

$B^0 \rightarrow \mu \mu BF Result$

$$\tau = 1.83^{+0.23}_{-0.20} \text{ (stat)} ^{+0.04}_{-0.04} \text{ (syst) ps}$$

Summary of systematic uncertainties and CMS result

T 11 0 0				1 1	.1	N # T 7
Table 2. Sv	stematic un	certainties	on masses	and wid	ths in	VIEV
1001C 2. Uy	otelliatic and	certairties	OII IIIabbeb	aria wia	u_{ij}	TVIC V.

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	/1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
feeddown shape	11)1	1	25	8	6
momentum scaling	$\setminus 1$	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20

- Investigated effects of systematics on local significance by a profiling procedure
 a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to >5.7σ
 - No relative significance changes for BW2 and BW3

M[BW1] = 6552 ± 10 ± 12 MeV	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5.7 σ		X(6900) [LHCb] (somewhat different fit model)
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 σ	consistent	M[BW2]=6905±11±7 MeV
$M[BW3] = 7287 \pm 19 \pm 5 MeV$	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 σ		$\Gamma[BW2] = 80 \pm 19 \pm 33 \text{ MeV}$

J/ψ signal

- Remove by J/ψ mass related cuts
- Clean J/ψ signal as seen

- ~15000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ <15 GeV)
- ~9000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ <9 GeV)

Steps to identify structures in $J/\psi J/\psi$ mass spectrum

- Null-hypothesis (initial baseline model): NRSPS+NRDPS
- Add potential structures to baseline model
 - Add most prominent structure to baseline model
 - Calculate its local significance
 - Keep in baseline only if $> 3\sigma$ significance
 - Repeat until no more $> 3\sigma$ structures

NRSPS—Non-Resonant Single Parton Scattering
NRDPS—Non-Resonant Double Parton Scattering
Local significance: standard likelihood ratio method

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}$$
, where $\Gamma(m) = \Gamma_0 \frac{qm_0}{q_0m}$,

Relativistic S-wave Breit-Wigner (BW) for each structure convolved with resolution function

Summary of systematic uncertainties and CMS result

		1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 2: Systematic uncertainties	s on masses an	id widths in MeV
rable 2. Systematic differ tallities	off filaboots af	ia wiatib, iii ivic v

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	/1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
feeddown shape	11)1	1	25	8	6
momentum scaling	\\1	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20

- Investigated effects of systematics on local significance by a profiling procedure
 a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to >5.7σ
 - No relative significance changes for BW2 and BW3

M[BW1] = 6552 ± 10 ± 12 MeV	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5.7 σ		X(6900) [LHCb] (somewhat different fit model)
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 σ	consistent	M[BW2]=6905±11±7 MeV
$M[BW3] = 7287 \pm 19 \pm 5 MeV$	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 σ		$\Gamma[BW2] = 80 \pm 19 \pm 33 \text{ MeV}$

Significances including systematics

- To include systematics, alternative resonance/background shapes applied in the fit:
- Calculate signal- and null-hypothesis NLL_{syst} including systematic using:

$$NLL_{syst-sig} = Min\{NLL_{nom-sig}, NLL_{alt-i-sig} + 0.5 + 0.5 \cdot \Delta dof\}$$

- $NLL_{nom-sig}$ means the NLL of nominal 'signal hypothesis' fit.
- $NLL_{alt-i-sig}$ means the NLL of i-th alternative fit of 'signal hypothesis'
- Δdof means the additional free parameters comparing to the nominal 'signal hypothesis' fit.
- $NLL_{syst-null} = Min\{NLL_{nom-null}, NLL_{alt-j-null} + 0.5 + 0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from $NLL_{syst-null} NLL_{syst-sig}$

	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

Final CMS model: 3 BWs + Backgrounds+ BW0

