

Recent searches for new physics and rare decays at LHCb

俞洁晟 (湖南大学)

第八届中国LHC物理研讨会 2022年11月23-27日

Outline

- Rare decays
 - ☐Flavor changing charged current (FCCC)
 - □Lepton-favour violating
 - ■Baryon- and lepton-number violating
 - □Rare *B* meson charmless baryonic decays

LHCb experiment

LHCb collaboration: 19 counties, 87 institutes, 1507 members

中国单位:

清华大学 华中师范大学 中国科学院大学 武汉大学 高能物理研究所 华南师范大学 湖南大学 北京大学 兰州大学

- Understand matter-antimatter imbalance (CP violation)
- Search for new physics (Rare decays)
- > Explore and understand QCD (Hadron properties, exotic hadrons)

LHCb data samples

Luminosity levelling $L \sim 3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Run-I: 3 fb⁻¹, Run-II: 6 fb⁻¹

Large $b\bar{b}$ and $c\bar{c}$ production cross sections: $\sigma(b\bar{b}X) \sim 0.5\% \times \sigma_{pp}^{\rm inelas}$, $\sigma(c\bar{c}X) \sim 10\% \times \sigma_{pp}^{\rm inelas}$

FCC $b \rightarrow c l^- \nu$ decays

$$m{B}
ightarrow m{D}^{(*)} m{ au}^- ar{m{
u}}_{m{ au}}$$

- ➤ In the SM, the only difference between $B \to D^{(*)} \tau^- \bar{\nu}_{\tau}$ and $B \to D^{(*)} \mu^- \bar{\nu}_{u}$ is the mass of the lepton
- > Rate $R(D^{(*)}) = \mathcal{B}(B \to D^{(*)}\tau^-\bar{\nu}_{\tau})/\mathcal{B}(B \to D^{(*)}\mu^-\bar{\nu}_{\mu})$ is sensitive to e.g charged Higgs, leptoquarks

R(D*) vs R(D) in 2015 with Run 1 data

ightharpoonup Measure $R(D^*)$ with Run 1 $D^{*+}\mu^-$ data

- Phys. Rev. Lett. 115 (2015) 111803
- \triangleright Three dimesional template fit in $m_{missing}^2$ (left) E_{μ} (middle), and q^2 (right)
- > All uncertainties on template shapes incorporated in fit:
 - Continuous variation in e.g different form factor parameters
 - ☐ Shape variations for all major backgrounds controlled using data samples
 - Histogram statistics included via Barlow-Beeston "lite"

New measurement of R(D*) vs R(D)

- > Simultaneously measure $R(D^*)$ and R(D) with Run 1 $D^{*+}\mu^-$ and $D^0\mu^-$ data
 - Higher branching fractions and higher efficiency $D^0\mu^-$ sample ~5 larger $D^{*+}\mu^-$ sample

$$B \rightarrow D^* \tau \nu$$

- ightharpoonup New $D^{*+}\mu^-$ sample $R(D^*)$, 1.6 σ agreement with our previous result
- $> R(D^*) = 0.281 \pm 0.018 \pm 0.024$
- $R(D) = 0.441 \pm 0.060 \pm 0.066$
- $\rho = -0.43$
- \geq 1.9 σ agreement with SM

LHCb-PAPER-2022-039

New measurement of R(D*) vs R(D)

- > Slightly lower R(D), slightly higher R(D), reduced correlation
- \triangleright World average 3.3 σ to 3.2 σ agreement with SM
- > Excellent overall agreement between measurements

First observation of $\Lambda_b \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$ with Run 1 data

Phys. Rev. D99 (2019) 055008

 $ightharpoonup \Lambda_b^+ 3\pi$ as normalization channel

arXiv:2201.03497

- $ightharpoonup au^- au^+ \pi^-
 u_ au$ or $au^- au^+ \pi^- \pi^0
 u_ au$
- $\mathcal{B}(\Lambda_{\rm b} \to \Lambda_{\rm c}^+ \tau^- \overline{\nu}_{\tau}) = (1.50 \pm 0.16 \pm 0.25 \pm 0.23)\%, \, \sigma(6.1)$
- $> R(\Lambda_c^+) = 0.242 \pm 0.026 \pm 0.040 \pm 0.059$
- > Agreement with the standard model prediction

Lepton-favour violating

$$B^0 \to K^{*0} \mu^{\pm} e^{\mp}$$
, $B^0_s \to \phi \mu^{\pm} e^{\mp}$, $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$

$b \rightarrow sl^+l^-$ decays

$> b \rightarrow sl^+l^-$ decays described by effective Hamiltonian

$$H = -\frac{4G_{\rm F}}{\sqrt{2}} V_{\rm tb} V_{\rm ts}^* \sum_{i} C_{i} O_{i} + \frac{K}{\Lambda_{\rm NP}^2} O_{j}^{(6)}$$

New physics can affect Wilson coefficients C_i or add new operators O_i

> Sensitivity to Wilson coefficients

$$\begin{array}{c}
 & B_{(s)}^0 \to l^+ l^- \\
 & [\mathcal{C}_{10}, \mathcal{C}_S, \mathcal{C}_P]
\end{array}$$

7: photon penguin; 9,10: EW penguin; S,P: (pseudo-) scalar penguin

> Theoretically clean probes of NP

- Pure leptonic decays
- Special angular observables
- Ratio between $e/\mu/\tau$

Search for $B^0 o K^{*0} \mu^{\pm} e^{\mp}$ and $B_s^0 o \phi \mu^{\pm} e^{\mp}$ with Run 1&2 data

- Forbidden or strongly suppressed in the SM
- Sensitive to new heavy particles beyond the SM
- $\nearrow B^0 \to J/\psi (\to \mu^+ \mu^-) K^{*0}$ and $B^0 \to J/\psi (\to \mu^+ \mu^-) \phi$ as normalization channel
- No significant signals are observed
- > The world's most stringent limits
- Limits are reported for scalar and lefthanded lepton-favour violating New Physics scenarios

$$\mathcal{B}(B^0 \to K^{*0} \mu^+ e^-) < 5.7 \times 10^{-9} (6.9 \times 10^{-9}),$$

$$\mathcal{B}(B^0 \to K^{*0} \mu^- e^+) < 6.8 \times 10^{-9} (7.9 \times 10^{-9}),$$

$$\mathcal{B}(B^0 \to K^{*0} \mu^{\pm} e^{\mp}) < 10.1 \times 10^{-9} (11.7 \times 10^{-9}),$$

$$\mathcal{B}(B_s^0 \to \phi \mu^{\pm} e^{\mp}) < 16.0 \times 10^{-9} (19.8 \times 10^{-9})$$

arXiv:2207.04005

Mode	Left-handed	Scalar
$B^0 \to K^{*0} \mu^+ e^-$	6.7 (8.3)	8.4 (10.2)
$B^0 \to K^{*0} \mu^- e^+$	8.0 (9.5)	9.9(11.5)
$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$	12.0 (13.9)	14.7 (17.0)
$B_s^0 \to \phi \mu^{\pm} e^{\mp}$	16.5 (20.5)	18.8 (23.1)

Search for $B^0 o K^{*0} au^{\pm} \mu^{\mp}$ with Run 1&2 data

- $> B^0 \rightarrow D^- D_s^+$ as normalization channel
- ightarrow $au^- o \pi^- \pi^+ \pi^-
 u_ au$ or $au^- o \pi^- \pi^+ \pi^- \pi^0
 u_ au$
- No significant signals are observed
- > $\mathcal{B}(B^0 \to K^{*0}\tau^+\mu^-) < 1.0(1.2) \times 10^{-5}$ @90%(95%) CL
- $\gg \mathcal{B}(B^0 \to K^{*0}\tau^-\mu^+) < 8.2(9.8) \times 10^{-6}$ @90%(95%) CL
- The most stringent upper limits on $b \to s\tau\mu$ transitions.

arXiv:2209.09846

The corrected mass
$$m_{
m corr} = \sqrt{p_\perp^2 + m_{K^* au\mu} + p_\perp}$$

Baryon- and lepton-number violating

$$B^0_{(s)} o p\mu^-$$

Search for $B^0_{(s)} \rightarrow p\mu^-$

- > Fact: Matter anti-matter asymmetry in the Universe
- > Solution: baryon number must be violated
- > SM predict: $\mathcal{B}(\bar{b} \to uul^-) < 2.4 \times 10^{-27}$ Phys. Rev. D72 (2005) 095001

Hypothetical Feynman diagrams of $B^0 \rightarrow pl^-$ mediated by a hypothetical Y boson.

arXiv:2210.10412

Jike's parallel talk for details

<u>第八届中国LHC物理研讨会 The 8th China LHC Physics Workshop (CLHCP2022)</u> (23-November 27, 2022): Parallel Session: HF/HI/QCD · Indico of IHEP (Indico)

Search for $B^0_{(s)} \rightarrow p\mu^-$ with Run 1&2 data

(by LHCb-China members)

$$\gt B^0$$
 → $K^+\pi^-$ and B^+ → J/ψ (→ $\mu^+\mu^-$) K^+ as normalization channel

- No significant signals are observed
- $\mathcal{B}(B^0 \to p\bar{p}) < 2.6(3.1) \times 10^{-9} @90\%(95\%) \text{ CL}$
- $\gg \mathcal{B}(B_s^0 \to p\bar{p}) < 12.1(14.0) \times 10^{-9} @90\% (95\%) \text{ CL}$
- ➤ The first upper limits on these decays

Rare *B* meson charmless baryonic decay

$$B^0_s o p\overline{p},\, B^0_{(s)} o p\overline{p}p\overline{p}$$

The charmless baryonic decays of B

Two-body baryonic decays suppressed with respect to multibody decays

➤ The decays of *B* mesons into multiple baryon final states are still far from being fully understood

BFs of Charmless Baryonic Modes with Strange Baryons

Charmless baryonic B^+ and B^0 modes branching fractions reported by HFLAV

2022/11/25

Search for $B_{(s)}^0 \to p\overline{p}$

- > First observation of $B^0 \to p\bar{p}$ with Run 1 data
- $\triangleright \mathcal{B}(B^0 \to p\bar{p}) = (1.25 \pm 0.27 \pm 0.18) \times 10^{-8}$
- $\triangleright \mathcal{B}(B_s^0 \to p\bar{p}) < 1.5 \times 10^{-8} @90\% \text{ CL}$
- Some predictions expect $B_s^0 \to p\bar{p}$ to be further suppressed (no penguin-level gluon-exchange and annihilation contributions)

 [PRD 89, 056003 (2014), PRD 95, 096004 (2017)]

PRL 119, 232001 (2017)

> Other predictions expect $B_s^0 \to p\bar{p}$ rates similar to that of $B^0 \to p\bar{p}$ (penguin-level gluon-exchange and annihilation contributions can't be neglected)

[JHEP2004, 035 (2020)]

ightharpoonup Updated search for $B_s^0 \to p\bar{p}$ decay is needed

Search for $B_s^0 o p\overline{p}$ with Run 2 data

(by LHCb-China members)

$$> N(B^0 \to p\bar{p}) = 98 \pm 11(16.2\sigma)$$

$$\triangleright N(B_s^0 \rightarrow p\bar{p}) = 4 \pm 5(0.9\sigma)$$

- $ightharpoonup B^0
 ightharpoonup K^+\pi^-$ and $B^0_s
 ightharpoonup K^+\pi^-$ as normalization channel
- $\gg \mathcal{B}(B^0 \to p\bar{p}) = (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}$ Consistent with Run 1
- > Improved Upper Limit on $B_s^0 \to p\bar{p}$ by factor 3

$$\square$$
 $\mathcal{B}(B_s^0 \to p\bar{p}) < 1.5 \times 10^{-8} @90\% \text{ CL (RUN-I)}$

 \square $\mathcal{B}(B_s^0 \to p\bar{p}) < 4.5(5.1) \times 10^{-9}@90\%(95\%)$ CL (RUN-II)

Jike's parallel talk for details

第八届中国LHC物理研讨会 The 8th China LHC Physics Workshop (CLHCP2022) (23-November 27, 2022): Parallel Session: HF/HI/QCD · Indico of IHEP (Indico)

arXiv:2206.06673, accepted by PRD

Search for $B_{(s)}^0 \to p\overline{p}p\overline{p}$

- \triangleright B meson decay to 4-baryon mode was never observed
 - $\square B^0 \to pppp \ (2.9\sigma)$ Phys. Rev. D 98, 071102 (2018)
- $\triangleright B_s \rightarrow pppp$ (no study reported) is expected to be further suppressed with respect to B^0
 - Hadronisation fraction $f_s/f_d \sim 25\%$, and $\left|\frac{V_{us}}{V_{ud}}\right|^2 \sim 5\%$

Search for $B_{(s)}^0 \to p\overline{p}p\overline{p}$ with Run 1&2 data

$$N(B^0 \rightarrow p\overline{p}p\overline{p}) = 48 \pm 8$$

Significance: > 9σ

$$N(B_s^0 \to p\overline{p}p\overline{p}) = 7 \pm 3$$

Significance: 4σ

- \triangleright B⁰ → J/ψ(→ $p\bar{p}$)K*0(→ K⁺π⁻) and B_S⁰ → J/ψ(→ $p\bar{p}$)φ(→ K⁺K⁻) as normalization channel
- $\triangleright \mathcal{B}(B^0 \to p\bar{p}p\bar{p}) = (2.2 \pm 0.4 \pm 0.1 \pm 0.1) \times 10^{-8}$
- $\gg \mathcal{B}(B_s^0 \to p\bar{p}p\bar{p}) = (2.3 \pm 1.0 \pm 0.2 \pm 0.1) \times 10^{-8}$
- $ightharpoonup B_s^0 o p\bar{p}p\bar{p}$ channel is not expected to be Cabibo suppressed: $\left|\frac{V_{us}}{V_{ud}}\right|^2 \sim 5\%$
- > Expect more theoretical explanations

Haoqiang's parallel talk for details

第八届中国LHC物理研讨会 The 8th China LHC Physics Workshop (CLHCP2022) (23-November 27, 2022): Parallel Session: HF/HI/QCD · Indico of IHEP (Indico)

Summary and prospects

- > There is no sign of beyond the SM source yet
 - **□** FCCC: $R(D^*)$, R(D), $\Lambda_b \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$
 - □ Lepton-favour violating: $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$, $B_S^0 \to \phi \mu^{\pm} e^{\mp}$, $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$
 - \blacksquare Baryon- and lepton-number violating: $B^0 \to p\mu^-$
 - Rare *B* meson charmless baryonic decay: $B_s^0 \to p\bar{p}$, $B_{(s)}^0 \to p\bar{p}p\bar{p}$
- \triangleright Opportunities with Run 3&4 (50 fb⁻¹)
 - □ Higher precision in rare decay measurements: $B_{s/d}^0 \to \mu^+\mu^-$, angular distributions and LFU tests in $b \to sl^+l^-$ decays, ...
 - Wider scope for exploitation: LFU tests in $b \rightarrow dl^+l^-$ decays, CPV in baryon decays, CPV in rare decays,...

LHCb-China team is currently focusing on rare decay measurements

Backup

Measurement of R(D*) vs R(D)

> Fit Simultaneous 3D-fit to 8 samples (and in 4 q2 bins...):

Measurement of R(D*) vs R(D)

> Fit was checked on specific subsamples:

$B^0 o K^{*0} \mu^{\pm} e^{\mp}$ and $B^0_s o \phi \mu^{\pm} e^{\mp}$

