Electroweak Phase Transition & Higgs Physics

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

Science

Family

- mjrm@sjtu.edu.cn
- 微信:mjrm-china

Friends

My pronouns: he/him/his

MeToo

CLHCP Workshop Nanjing November 25, 2022

Was There an Electroweak Phase Transition?

- Not in the Standard Model but could be in BSM Universe
- Answering this question is one of the few opportunities for collider physics to reach a definitive conclusion
- It's an exciting frontier at the interface of particle physics and cosmology with ample opportunities for significant theoretical and experimental advances

Key Ideas for this Talk

- Determining the thermal history of EW symmetry breaking is a key challenge for particle physics
- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders to address this challenge
- Precision tests and direct searches are vital
- Robust test of theory requires a new era of EFT & non-perturbative computations -> new results highlight this theoretical frontier

Key Ideas for this Talk

- MJRM: 1912.07189
 - L. Friedrich, MJRM, T.V.I. Tenkanen, V.Q. Tran: 2203.05889
 - S. Arunasalam, H.-L. Li, K. Liu, MJRM, Y. Zeng, W. Zhang 2211.NNNNN
 - Y. Cai, MJRM, L. Zhang, W. Zhang 2212.NNNNN
- Recent EFT + Non-perturbative:
 - L. Niemi, H.H. Patel, MJRM, T.V.I. Tenkanen, D. J. Weir: 1802.10500
 - O. Gould, J. Kozaczuk, L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 1903.11604
 - L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 2005.11332

Outline

- I. Context & Questions
- II. EWPT: A Collider Target
- III. Higgs Boson Properties: Model Illustrations: LHC Opportunities
- IV. Theoretical Robustness
- V. Outlook

I. Context & Questions

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in next generation probes, could a cosmological phase transition be responsible?

Thermal History of Symmetry Breaking

QCD Phase Diagram → EW Theory Analog?

EWSB Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^{C}$ (GeV)
4D Isotropic	[76]	80±7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does new TeV scale physics change this picture? What is the phase diagram? EWPT? If so, what kind?

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in next generation probes, could a cosmological phase transition be responsible?

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves > rich possibilities for symmetry breaking

Thermal History of EWSB

• What is the landscape of potentials and their thermal histories?

How can we probe this
 T > 0 landscape
 experimentally ?

How reliably can we compute the thermodynamics?

n evolve differently as T evolves → ilities for symmetry breaking

Experimental Probes

Extrema can evolve differently as T evolves > rich possibilities for symmetry breaking

II. EWPT: A Collider Target

MJRM 19010.07189

- Mass scale
- Precision

T_{FW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \cdots$$

$$T_0^2 = (8\lambda + \text{loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots\right)^{-1} v^2$$

$$T_0 \sim 140 \text{ GeV} \equiv T_{EW}$$

$$\equiv T_{EW}$$

Generate finite-T barrier

 $a_2 H^2 \phi^2$: T > 0loop effect $a_2 H^2 \phi^2$: T = 0tree-level effect $a_1 H^2 \phi$: T = 0tree-level effect

Simple arguments: T_{EW} + first order EWPT \rightarrow $M_{\phi} \leq 700 \text{ GeV}$

 $a_1 H^2 \phi$: T = 0tree-level effect

III. Higgs Boson Properties

Model Illustrations

- Thermal $\Gamma(h \rightarrow \gamma \gamma)$
- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays
- Single φ production

- Thermal $\Gamma(h \rightarrow \gamma\gamma)$
- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays
- Single φ production

 $H^2\phi^2$ Barrier?

• Thermal $\Gamma(h \rightarrow \gamma \gamma)$

- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays
- Single φ production

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet:	1	√	*
Real singlet: Z ₂	1	√	√
Complex Singlet	2	✓	√
EW Multiplets	3+	✓	√

xSM

May be low-energy remnants of UV complete theory & illustrative of generic features

Singlets: Precision & Res Di-Higgs Prod

Kotwal, No, R-M, Winslow 1605.06123

Singlets: Resonant Di-Higgs & H₂→ VV

SFOEWPT Max Benchmarks: HL LHC Combination bbyy & 4 lepton

100 TeV accessible

SFOEWPT Min Benchmarks:

- Observation of 4I channel would indicate existence of heavy resonance consistent with xSM SFOEWPT
- "Smoking gun" region would provide nearly definitive evidence & narrow down model parameter space
- Exclusion would leave ample room for 100
 TeV pp discovery

Light Singlets: Exotic Higgs Decays

 $h_2 \rightarrow h_1 h_1 \rightarrow 4b$

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206, Carena et al 2203.08206, Wang et al 2203.10184,

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet:	1	√	*
Real singlet: Z ₂	1	✓	√
Complex Singlet	2	✓	/
EW Multiplets	3+	✓	√

cxSM

May be low-energy remnants of UV complete theory & illustrative of generic features

Complex Singlet: DM + EWPT

Original Model:

- SM + complex scalar singlet
- Global U(1): broken spontaneously & softly
- Particle spectrum
 - Mixed doubletsinglet scalars h_{1,2}
 - Scalar dark matter A

Search for bb + MET: example sub-processes

Complex Singlet: DM + EWPT

Search for bb + MET

Heavy Higgs $\rightarrow VV$ exclusion: BR $(h_2 \rightarrow VV)$ larger when $m_{h2} < 2 m_A$

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet:	1	√	*
Real singlet: Z ₂	1	✓	√
Complex Singlet	2	1	√
EW Multiplets	3+	✓	✓

May be low-energy remnants of UV complete theory & illustrative of generic features

Real Triplet

 Σ SM: $\Sigma \sim (1, 3, 0)$

EW precision tests → too tiny

- $\Gamma(h \rightarrow \gamma\gamma)$
- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays

 ϕ : EW Multiplet

$H \rightarrow \gamma \gamma$: Is There a Barrier?

EWPT → **Decrease** in rate

$H \rightarrow \gamma \gamma$: Is There a Barrier?

34

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500

Non-perturbative

Real Triplet & EWPT: Novel EWSB

- 1 or 2 step
- Non-perturbative

Dynamical BSM Scalar: EWPT & GW

BMA: $m_{\Sigma} + h \rightarrow \gamma \gamma$

BMA': BMA + $\Sigma^0 \rightarrow ZZ$

- Two-step
- EFT+ Non-perturbative

IV. Theoretical Robustness

- L. Niemi, H. Patel, MRM, T. Tenkanen, D. Weir 1802.10500
- O. Gould, J. Kozaczuk, L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 1903.11604
- L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 2005.11332

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter space not viable

A. Perturbative

- Most feasible approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
- Quantitative reliability needs to be verified

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter

- B. Perturbative mark pert theory

 Perturbative mark

 Perturbative ma ranges of models, analyze parameter space, & predict experimental signatures
 - Quantitative reliability needs to be verified

Real Triplet: One-Step EWPT

- One-step
- Non-perturbative

Real Singlet: One-Step EWPT

Opportunities

TDLI/SJTU Program

Model building & cosmological scenarios

Pheno: Collider, EDM, Gravitational Radiation

EW Phase Transition & EW Baryogenesis

Robust theory computations: formal "machinery", analytic, non-perturbative

IV. Outlook

- Determining the thermal history of EWSB is field theoretically interesting in its own right and of practical importance for baryogenesis and GW → a key challenge for particle physics
- The scale T_{EW} → any new physics that modifies the SM crossover transition to a first order transition must live at M < 1 TeV and couple with sufficient strength to yield (in principle) observable shifts in Higgs boson properties
- A robust confrontation of of experiment and theory requires new level of theoretical rigor combining EFT methods with lattice simulations and new advances in theoretical tools

Was There an Electroweak Phase Transition?

Answering this question is an exciting frontier at the interface of particle physics and cosmology, with ample opportunities for significant theoretical and experimental advances

