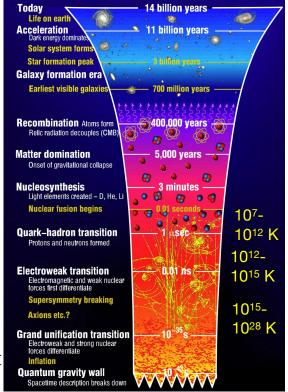


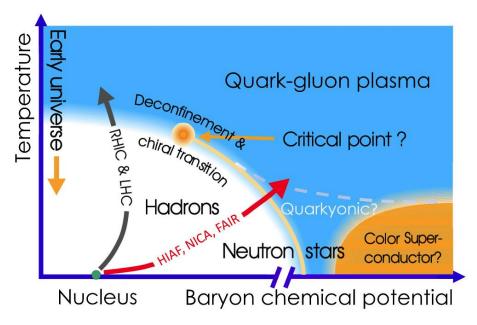
Theory Overview of Heavy Ion Physics

Yifeng Sun

Shanghai Jiao Tong University

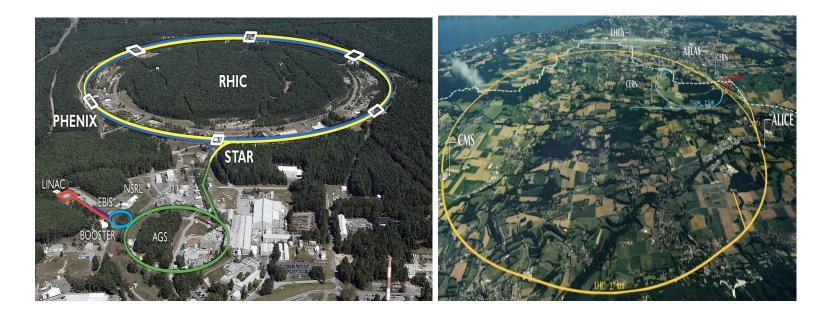
2022年11月26日


Why relativistic heavy ion collisions


Confined

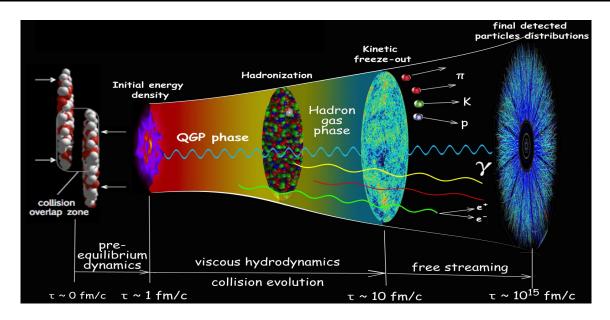
Deconfined

- **Quark confinement vs asymptotic freedom**
- **Quark-Gluon Plasma:**
 - ✓ phase diagram
 - ✓ chiral sysmmetry restoration, quark confinement
 - ✓ Topological phase transition



Why relativistic heavy ion collisions

 Smooth Crossover at high T and low µ_B
 Is there a first order phase transition at low T and high µ_B?
 Is there a critical point?
 Neutron star can also probe it


Currently Operating facilities

RHIC@BNL, 2000- LHC@CERN, 2010-

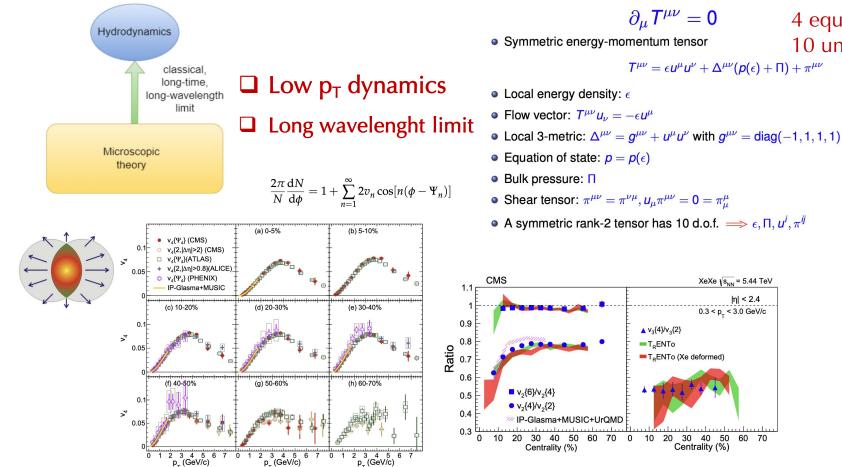
3-200GeV@RHIC, 2.76-5.02TeV@LHC

Little Bangs

Initial non-equilibrium+Hydrodynamics+hadronization+hadron gas
 Design probes and observables to probe these stages

Outline

QGP evolution


- **QGP** transport coefficient
- **Hadronization**
- **QCD** phase diagram
- **Spin phenomena**

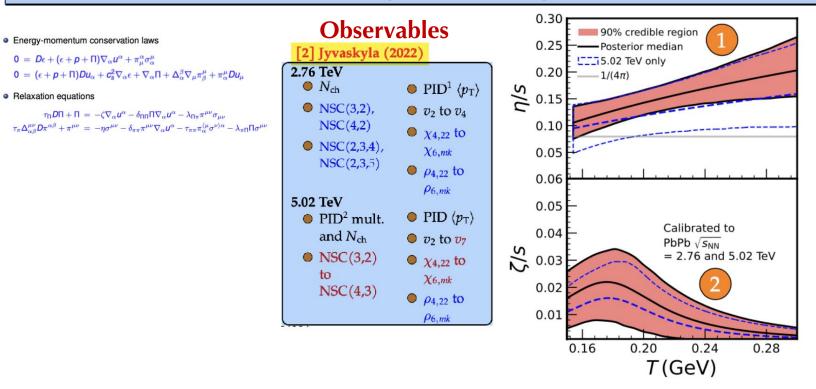
Outline

QGP evolution

- **QGP** transport coefficient
- **Hadronization**
- **QCD** phase diagram
- **Spin phenomena**

1. Success of visco-hydrodynamics in HICs

4 equations 10 unkowns


8

 $T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + \Delta^{\mu\nu} (\rho(\epsilon) + \Pi) + \pi^{\mu\nu}$

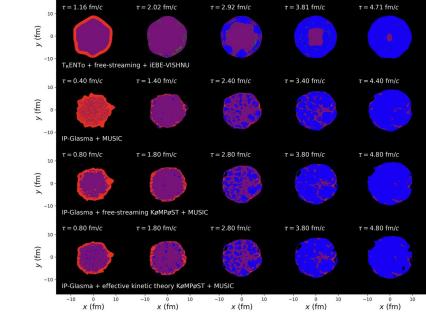
|m| < 2.4

60 70

1. Bayesian analysis

2.7*10³ CPU-years for 8 parameters

Relaxation equations

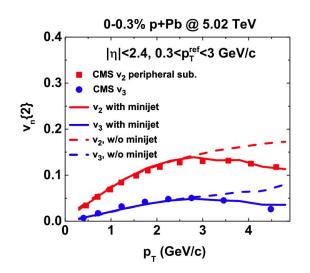

T dependence of QGP transport coefficient

1. Causality violations in visco-Hydro

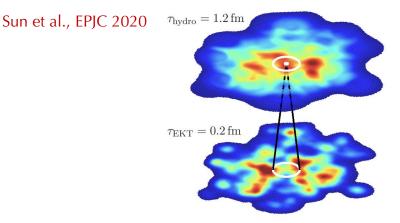
Bemfica et al., PRL 2021

 Energy-momentum conservation laws 	$(\varepsilon + P + \Pi - \Lambda_1) - \frac{1}{2\tau_{\pi}}(2\eta + \lambda_{\pi\Pi}\Pi) - \frac{\tau_{\pi\pi}}{2\tau_{\pi}}\Lambda_3 \ge 0,$	(5a)			
$0 = D\epsilon + (\epsilon + p + \Pi) \nabla_{\alpha} u^{\alpha} + \pi^{\alpha}_{\mu} \sigma^{\mu}_{\alpha}$ $0 = (\epsilon + p + \Pi) Du_{\alpha} + c_{s}^{2} \nabla_{\alpha} \epsilon + \nabla_{\alpha} \Pi + \Delta^{\beta}_{\alpha} \nabla_{\mu} \pi^{\mu}_{\beta} + \pi^{\mu}_{\alpha} Du_{\mu}$	$(2\eta + \lambda_{s\Pi}\Pi) - \tau_{ss} \Lambda_1 > 0,$	(5b)	(u	10 -	τ = 1.16 fm/c
Relaxation equations	$\tau_{\pi\pi} \le 6\delta_{\pi\pi},$	(5c)	y (fm)	0 -	
$\begin{split} \tau_{\Pi} D\Pi + \Pi &= -\zeta \nabla_{\alpha} u^{\alpha} - \delta_{\Pi\Pi} \Pi \nabla_{\alpha} u^{\alpha} - \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} \\ \tau_{\pi} \Delta^{\mu\nu}_{\alpha\beta} D\pi^{\alpha\beta} + \pi^{\mu\nu} &= -\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \nabla_{\alpha} u^{\alpha} - \tau_{\pi\pi} \pi^{(\mu}_{\alpha} \sigma^{\nu)\alpha} - \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu} \end{split}$	$\frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} + c_s^2 - \frac{\tau_{\pi\pi}}{12\tau_{\pi}} \ge 0,$	(5d)		-10 -	T _R ENTo + free-streamin
	$\frac{1}{3\tau_{\pi}}[4\eta+2\lambda_{\pi\Pi}\Pi+(3\delta_{\pi\pi}+\tau_{\pi\pi})\Lambda_3]$			10 -	τ = 0.40 fm/c
	$+\frac{\zeta+\delta_{\Pi\Pi}\Pi+\lambda_{\Pi\sigma}\Lambda_3}{\tau_{\Pi}}+ \Lambda_1 +\Lambda_3c_s^2$		y (fm)	0 -	
	$+\frac{\frac{12\delta_{xx}-\tau_{xx}}{12\tau_x}(\frac{\lambda_{\Pi x}}{\tau_\Pi}+c_s^2-\frac{\tau_{xx}}{12\tau_x})(\Lambda_3+ \Lambda_1)^2}{\varepsilon+P+\Pi- \Lambda_1 -\frac{1}{2\tau_x}(2\eta+\lambda_{\pi\Pi}\Pi)-\frac{\tau_{xx}}{2\tau_\pi}\Lambda_3}$			-10 -	IP-Glasma + MUSIC
	$\leq (\varepsilon + P + \Pi)(1 - c_s^2),$	(5e)		10 -	$\tau = 0.80 \text{ fm/}c$
	$\frac{1}{6\tau_{\pi}} [2\eta + \lambda_{\pi\Pi}\Pi + (\tau_{\pi\pi} - 6\delta_{\pi\pi}) \Lambda_1]$		y (fm)	0 -	
	$+\frac{\zeta+\delta_{\Pi\Pi}\Pi-\lambda_{\Pi\pi} \Lambda_1 }{\tau_{\Pi}}+(\varepsilon+P+\Pi- \Lambda_1)c_s^2\geq$	≥ 0,		-10 -	C. A
		(5f)		-10	IP-Glasma + free-strean
	$1 \geq \frac{\frac{12\delta_{ex}-\tau_{xx}}{12\tau_x} \left(\frac{\lambda_{\Pi x}}{\tau_{\Pi}} + c_s^2 - \frac{\tau_{xx}}{12\tau_x}\right) (\Lambda_3 + \Lambda_1)^2}{\left \frac{1}{2\tau_x} (2\eta + \lambda_{\pi\Pi}\Pi) - \frac{\tau_{xx}}{2\tau_x} \Lambda_1]^2},$	(5g)	(u	10 -	τ = 0.80 fm/c
	$\frac{1}{3\tau_{\pi}}[4\eta+2\lambda_{\pi\Pi}\Pi-(3\delta_{\pi\pi}+\tau_{\pi\pi}) \Lambda_{1}]$		<i>y</i> (fm)	-10 -	
	$+\frac{\zeta+\delta_{\Pi\Pi}\Pi-\lambda_{\Pi\pi} \Lambda_1 }{\tau_{\Pi}}+(\varepsilon+P+\Pi- \Lambda_1)c_s^2$			-10 -	IP-Glasma + effective ki
	$\geq \frac{(\varepsilon + P + \Pi + \Lambda_2)(\varepsilon + P + \Pi + \Lambda_3)}{3(\varepsilon + P + \Pi - \Lambda_1)}$				<i>x</i> (fm)
	$\times \bigg\{ 1 + \frac{2[\frac{1}{2\tau_{\pi}}(2\eta + \lambda_{\pi\Pi}\Pi) + \frac{\tau_{\pi\pi}}{2\tau_{\pi}}\Lambda_3]}{\varepsilon + P + \Pi - \Lambda_1 } \bigg\},$	(5h)			

Plumberg et al., PRC 2022



\Box Causality means $v_s^2 < c^2$ (red point means acausal)


□ Large violation of causality even in PbPb central collisions

1. Transport theory

 $p_{\mu} \partial^{\mu} f(x, p) + m^* \partial^{\mu} m^* \partial_{p^{\mu}} f(x, p) = \mathcal{C}[f]$

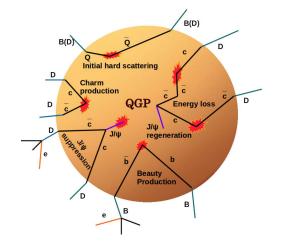
$$\partial_{\tau} f_{\mathbf{x},\mathbf{p}} + \frac{\mathbf{p}}{|\mathbf{p}|} \cdot \nabla_{\mathbf{x}} f_{\mathbf{x},\mathbf{p}} - \frac{p^{z}}{\tau} \partial_{p^{z}} f_{\mathbf{x},\mathbf{p}}$$
$$= -\mathcal{C}_{2\leftrightarrow 2}[f_{\mathbf{x},\mathbf{p}}] - \mathcal{C}_{1\leftrightarrow 2}[f_{\mathbf{x},\mathbf{p}}].$$

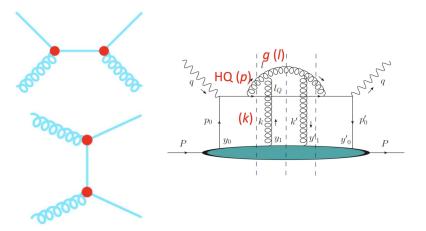
- **Causality guaranteed**
- **Used also in pre-thermal equilibrium stage**
- □ No consistent formulation and no precise prediction

1. Public available code and applications in nuclear structure

□ Hydro: MUSIC, SONIC, ECHO-QGP, CLVISC, vHLLE, VISHNU

□ Transport: UrQMD, AMPT, SMASH, PHSD, Hijing

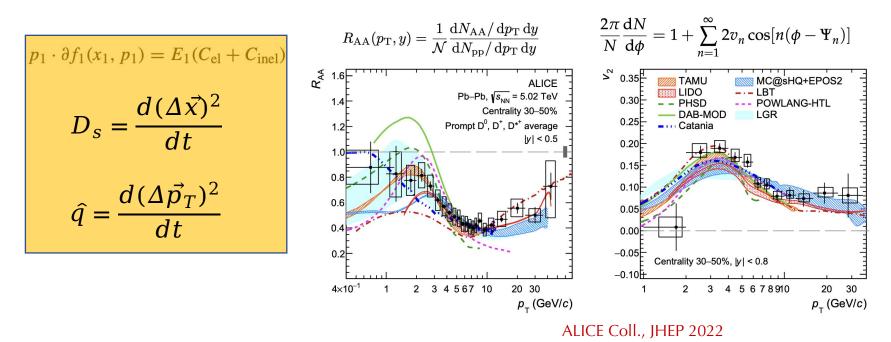

Outline


QGP evolution

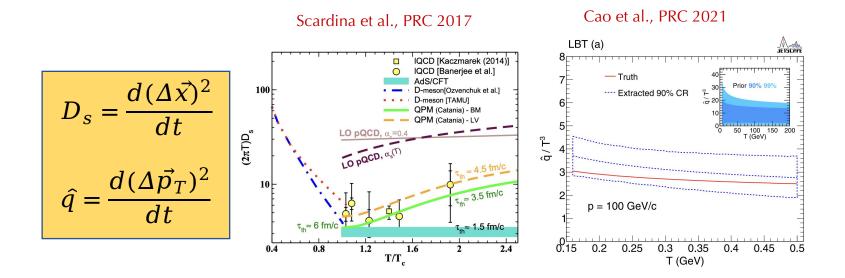
QGP transport coefficient

- **Hadronization**
- **QCD** phase diagram
- **Spin phenomena**

2. Heavy quarks and jets and their diffusions

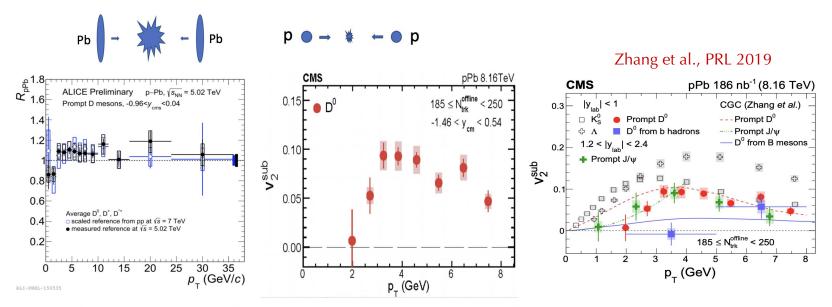


- Heavy quarks and jets as a probe of QGP
 - ✓ clear production (hard scattering)
 - ✓ long thermalization time (~fm/c)


- **Two dominate processes**
 - ✓ elastic parton scattering
 - ✓ inelastic gluon emission

2. Transport coefficients

- **Two transport coefficients (coordinate and momentum)**
- \Box R_{AA} and V_n probe the interaction strength
 - ✓ Smaller R_{AA} and larger V_n mean larger interaction strength (larger qhat or smaller D_s)


2. Transport coefficients by far

u qualitative determination of **D**_s and qhat

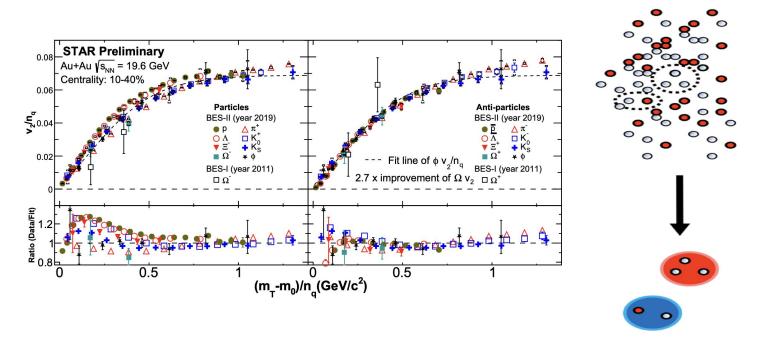
See talk by Xing Wenjing See talk by Mao Yaxian

2. Challenges by small system collisions

 \Box Sizeable v₂ and small R_{pA} suppression. Not explained by QGP interaction \Box The initial states effect by CGC (dense gluon field) can explain R_{pA} and v_2 **D** PHENIX sees the R_{pA} suppression of $\psi(2S)$

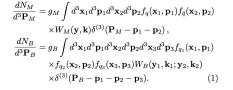
 \checkmark May be both CGC and QGP?**R**_{pA} and **v**_n vs centrality

See talk by Wang Jianqiao See talk by Fu Baochi See talk by Lu Zhiyong

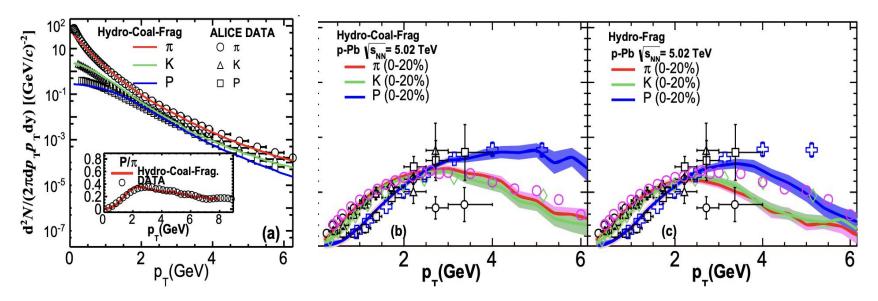

Outline

QGP evolution

- **QGP** transport coefficient
- **Hadronization**
- **QCD** phase diagram
- **Spin phenomena**

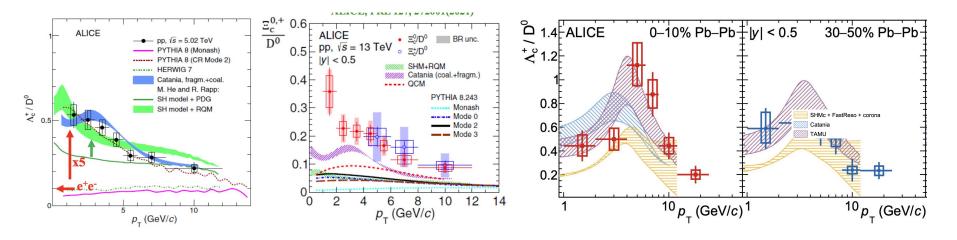

3. Hadronization of light quark hadron

The spectra and v₂ can be described well by statistical mechanics in low p_T and Fragmentation in high p_T
 NCQ scaling suggests coalescence



3. Hadronization of light quark hadron

□ Intermediate p_T data needs coalescence



3. Hadronization of heavy quark hadron

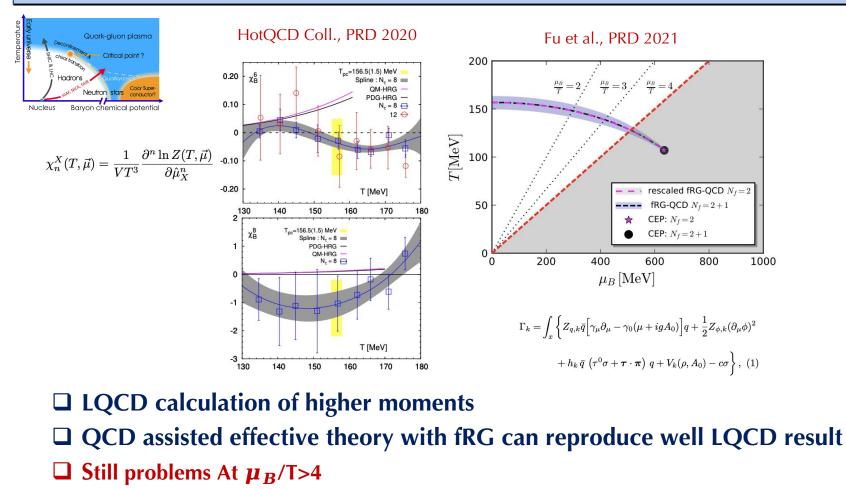
□ Fragmentation+coalescence in HF hadrons

- ✓ What is the formal and consistent formulation of coalescence
- ✓ Need to understand why coalescence is a sharp process

See talk by Zhu Jianhui See talk by Cheng Tiantian

ALICE Coll., arxiv 2112.08156

Outline


QGP evolution

- **QGP** transport coefficient
- **Hadronization**

QCD phase diagram

Spin phenomena

4. Efforts at finite μ_B

4. Dynamical phase transition theory-Hydro

$$egin{aligned} D\phi_Q &= -\Gamma_Q \left(\phi_Q - ar \phi_0
ight) \ \partial_\mu \, m{T}^{\mu
u} &= m{0} \end{aligned}$$

$$\begin{split} \phi_{Q}(x) &\sim \int_{\Delta x} \left\langle \delta \frac{s}{n} \left(t, x + \frac{1}{2} \Delta x \right) \delta \frac{s}{n} \left(t, x - \frac{1}{2} \Delta x \right) \right\rangle e^{iQ \cdot \Delta x} \\ T^{\mu\nu} &= e \, u^{\mu} u^{\nu} - p_{(+)} \Delta^{\mu\nu} + \pi^{\mu\nu} \\ p_{(+)}(e, n) &= p(e, n) + \Delta p(e, n, \phi(e, n)) \\ \Delta p &= \left[-(e + p) \Delta \beta + n \Delta \alpha + \Delta s \right] / \beta_{(+)} \\ \Delta s(e, n, \phi) &\equiv \int dQ \Delta s_Q \\ &= \int dQ \frac{Q^2}{(2\pi)^2} \left[\log \frac{\phi_Q}{\bar{\phi}_Q(e, n)} - \frac{\phi_Q}{\bar{\phi}_Q(e, n)} + 1 \right] \\ \Delta \beta &= \int dQ \frac{Q^2}{(2\pi)^2} \frac{\phi_Q - \bar{\phi}_Q}{(\bar{\phi}_Q)^2} \left(\frac{\partial \bar{\phi}_Q}{\partial e} \right)_n, \\ \Delta \alpha &= -\int dQ \frac{Q^2}{(2\pi)^2} \frac{\phi_Q - \bar{\phi}_Q}{(\bar{\phi}_Q)^2} \left(\frac{\partial \bar{\phi}_Q}{\partial n} \right)_e \end{split}$$

Stephanov et al., JHEP 2018

 $\partial_t n_B(\mathbf{x},t) = \Gamma \nabla^2 \left(\mathcal{F}'[n_B] \right) + \nabla \cdot \mathbf{J}(\mathbf{x},t)$

$$\mathbf{J}(\mathbf{x},t) = \sqrt{2T\Gamma}\boldsymbol{\zeta}(\mathbf{x},t)$$
$$\langle \zeta_i(\mathbf{x},t)\zeta_j(\mathbf{x}',t')\rangle = \delta(\mathbf{x}-\mathbf{x}')\delta(t-t')\delta_{ij}$$
$$\mathcal{F}[n_B] = T\int d^3x \left(\frac{m^2}{2n_c^2}(\Delta n_B)^2 + \frac{K}{2n_c^2}(\nabla n_B)^2 + \frac{\lambda_3}{3n_c^3}(\Delta n_B)^3 + \frac{\lambda_4}{4n_c^4}(\Delta n_B)^4 + \frac{\lambda_6}{6n_c^6}(\Delta n_B)^6\right)$$

Nahrgang et al., PRD 2019

Deterministic method (Hydro+) vs Stochastic method
 How to apply first order phase transition?

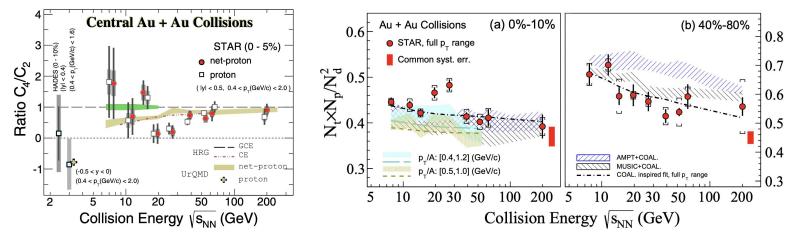
4. Dynamical phase transition theory-Transport

$$\begin{aligned} \partial_{X^{0}}f_{a}(X,\mathbf{p}) + \frac{p^{i\pm}}{E_{\mathbf{p}^{\pm}}} \partial_{X^{i}}f_{a}(X,\mathbf{p}) \\ -\partial_{X^{i}}V_{a}^{S}(X) \frac{M_{a}}{E_{\mathbf{p}^{\pm}}} \partial_{p_{i}}f_{a}(X,\mathbf{p}) \mp \partial_{X^{i}}V_{0}^{V}(X)\partial_{p_{i}}f_{a}(X,\mathbf{p}) \\ \mp \partial_{X^{i}}V_{j}^{V}(X) \frac{p^{j\pm}}{E_{\mathbf{p}^{\pm}}} \partial_{p_{i}}f_{a}(X,\mathbf{p}) = \mathcal{C}[f_{a}], \end{aligned}$$

$$\mathcal{L}_{NJL}^{S} = \bar{q}(i \ \beta - m_{0})q + \frac{G_{S}}{2}\sum_{a=0}^{8} \left[(\bar{q}\lambda^{a}q)^{2} + (\bar{q}i\gamma_{5}\lambda^{a}q)^{2} \right] \\ -K \left[\det_{f} \left(\bar{q}(1+\gamma_{5})q \right) + \det_{f} \left(\bar{q}(1-\gamma_{5})q \right) \right], \end{aligned}$$

$$(1)$$

$$L^{S} = \int_{-5}^{0} \int_{0}^{0} \int$$


Li et al., PRC 2017

Dynamical generation of first order phase transition
 More reliable effective theory? How to include second order phase transition?

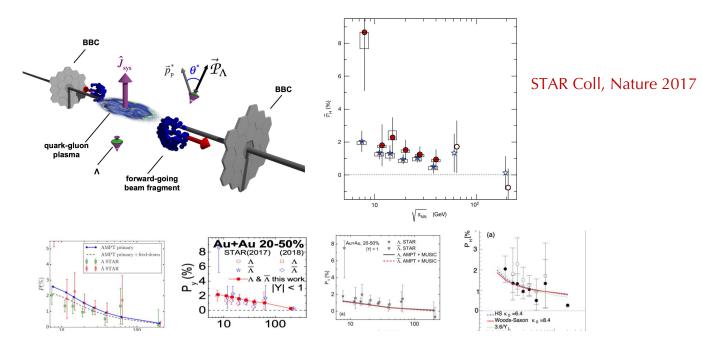
4. Comparison with experiments

STAR Coll, PRL 2022

STAR Coll, arXiv 2209.08058

□ Nonmonotonic varaiation

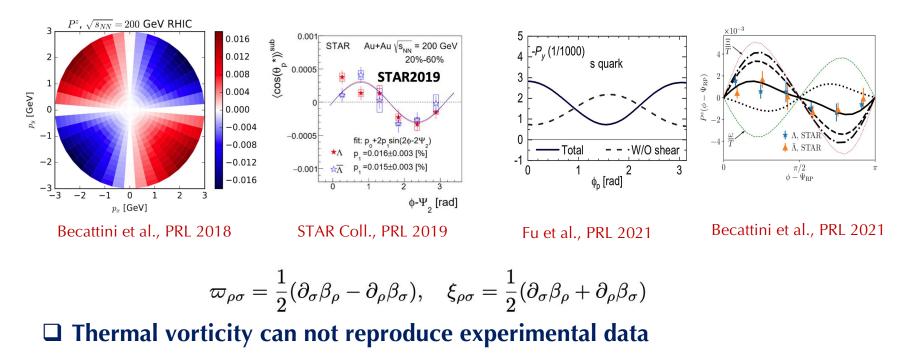
✓ need theoretical input


Outline

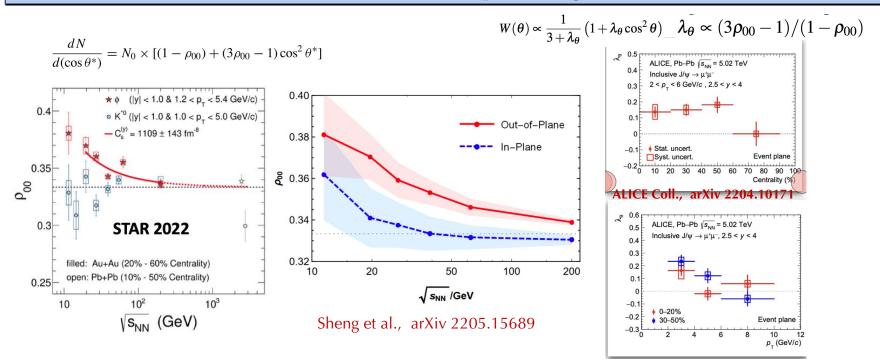
QGP evolution

- **QGP** transport coefficient
- **Hadronization**
- **QCD** phase diagram

Spin phenomena


5. Spin phenomena in HICs

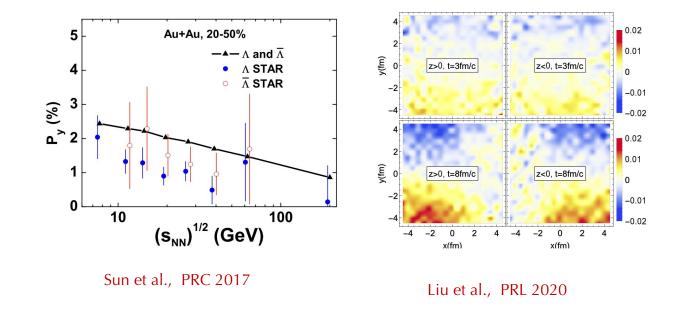
□ Highly rotating QGP with rotation speed 10²² s⁻¹


□ Good agreement between experiments and theories using statistical method on global spin polarization

5. Angular dependence of longitudal spin polarization

- □ Thermal shear can but a non-global thermal equilibrium effect
 - ✓ need spin transport theory

5. Vector meson spin alignment



❑ Vector meson spin alignment can not be described by vorticity
 ❑ *φ* field may explain it

- \checkmark need to calculate ϕ field theoretically
- ✓ need to understand charm meson spin

See talk by Bai Xiaozhi

5. Transport theory

□ Chiral kinetic theory can describe well global and local spin polarization

- ✓ fully dynamic
- ✓ need to develop to include finite mass

Summary

There are many materials that I do not cover

✓ anomalous phenomena, exotic particles in HICs, UPC, HQ diffusion in

Glamsa, quarkonia production, neutron star.....

See talk by Wu Wenya See talk by Li Tianqi

□ Much achievements and more problems

✓ hydro valid range, small systems, μ_B /T>4, pseudogauge dependence with

spin, other spin puzzle

Thank you for your attentions!