

Top quark measurements at the LHC

Hongbo Liao

Institute of High Energy Physics, CAS

8th CLHCP, 23-27 November, 2022, Nanjing

top-quark

The top has several features that make it a very interesting particle:

The LHC is a top factory and allows:

- Over 200M top quark pairs in LHC Run2 13 TeV data More coming with Run3 data taking
 - \checkmark Precise measurements of top pairs and single top production
- \checkmark Observation of rare processes involving top
- \checkmark Use the top quark as a "tool" to study the SM

Top pair production

Top cross sections

arXiv:2205.13830

Measurements in lepton channels

eµ channel

- ✓ Inclusive and 8 2D distributions
- For differential applied in each bin

 $\sigma_{t\bar{t}} = 836 \pm 1(stat) \pm 12(syst) \pm 16(lum + E_{cms})$ 2.4% uncertainty

- Largest uncertainties from luminosity and Wt
- No improvement in precision compared to 36/fb result

- Single lepton PRD 104 (2021) 092013
- ✓ included resolved and boosted topologies
- $\checkmark\,$ Inclusive, parton and particle level
- ✓ Expanded PS compared to dilepton

 $\sigma_{\mathrm{t}\overline{\mathrm{t}}} =$ **791** \pm **1** (stat) \pm **21** (syst) \pm **14** (lumi) pb

3.2% uncertainty most precise in this channel

JHEP 06 (2022) 063

Measurements in boosted topology

ATLAS

2

Single lepton channel

- Significant reduction of JES uncertainty due to in-situ JES calibration
- Problems with modelling additional jets and 2D distributions and azimuthal distances to hadronic top

pT of leading additional jet

arXiv:2205.02817

Single top production

Single top production

arXiv:2209.08990

Single top cross section ar

arXiv:2208.00924

s-channel

Observed at Tevaton

✓ Very complicated at LHC:

Inclusive and differential XS in eµ channel

tW channel

- --small cross section, large backgrounds
- Matrix Element technique to separate S/B

- $\sigma_{\rm meas.} = 8.2 \pm 0.6 \; ({\rm stat.})^{+3.4}_{-2.8} \; ({\rm syst.}) \; {\rm pb}$
- Compatible with SM prediction:

Significance 3.3 (3.9) obs.(exp)

dominated by modelling and JES

Source	$\mid \Delta\sigma/\sigma \ [\%]$
$t\bar{t}$ normalisation	+24/-17
Jet energy resolution	+18/-12
Jet energy scale	+18/-13
Other s-channel modelling sources	+18/-8

10% uncertainty

In agreement with predictions

- tW is also measured in single lepton channel by ATLAS (8 TeV) and CMS (13 TeV)
- Less precise than dilepton

tt + X production

tty production

Precision 4%

JHEP 09 (2020) 049

□ Prediction from MG5aMC (LO+NLO k-factor) is lower

EPJC 81 (2021) 737

ttZ measurements

Channel	$\mu_{t\bar{t}Z}$
Trilepton	$1.17 \pm 0.07 \text{ (stat.)} {}^{+0.12}_{-0.11} \text{ (syst.)}$
Tetralepton	1.21 ± 0.15 (stat.) $^{+0.11}_{-0.10}$ (syst.)
Combination $(3\ell + 4\ell)$	1.19 ± 0.06 (stat.) ± 0.10 (syst.)

- ✓ Precision 10%
- \checkmark Slightly higher than prediction

Measurement of ttZ(bb) and ttH(bb) in boosted regime arXiv:2208.12837

ttW measurement

tt+X summary

t + X production

tZq production

Precision is expected to improve with more statistics in Run 3

tqy production

ATLAS-CONF-2022-013

Compatible with the SM within $2.5(1.9)\sigma$ at parton(particle) level

t+X summary

4-top production

4-top searches

Heaviest particle final state Many different final states

- ✓ Measured cross-section: σ (tttt) = 24 ⁺⁷/₋₆ fb (4.7 σ)
- ✓ Predicted NLO QCD+EW: σ (tttt) = 12.0^{+2.2}/_{-2.5} fb
- \checkmark Compatible within 2σ

significance: 4.7σ

4-top searches

1-lepton, 2-lepton OS, all-hadronic channels

Channels with large tt+bb and multi jet (all-hadronic) backgrounds

Large excess in data in most sensitive regions in all-hadronic channel

Example post-fit S+B BDT discriminant distributions in most sensitive SR bins in Run II

- Combined signal-strength: $\mu(tttt) = 1.4 \pm 0.4$
- ✓ significance: 3.9σ
- ✓ Limited by data statistics and ttbb background modelling

4-top summary

CMS Preliminary 138 fb⁻¹ (13 TeV) 1.2σ Expected SL 1.4σ Observed 0.8σ OSDL 1.4**σ** 0.4o All-hadronic 2.5**σ** 2.70 SSDL&ML arXiv:1908.06463 2.60 3.20 Combined result 3.9o 0 2 з 4 Expected and observed significance of tītī

Significance

ATLAS JHEP 11 (2021) 118

ATLAS √s = 13 TeV, 139 fb⁻¹ ---- tot. tītī - stat. Tot. (Stat., Syst.) Obs. Sig. **2.2** $^{+1.6}_{-1.2}$ ($^{+0.7}_{-0.7}$, $^{+1.5}_{-1.0}$) 1.9 σ 1L/2LOS **2.0** $^{+0.8}_{-0.6}$ ($^{+0.4}_{-0.4}$, $^{+0.7}_{-0.4}$) 4.3 σ 2LSS/3L **2.0** $^{+0.8}_{-0.6}$ ($^{+0.4}_{-0.4}$, $^{+0.7}_{-0.5}$) 4.7 σ Combined 4 5 6 7 8 9 1 10 0 2 3 Best-fit $\mu = \sigma_{\text{tftf}} / \sigma_{\text{tftf}}^{\text{SM}}$ expected significance: 2.6 o

expected significance: 2.6 σ observed significance: 4.7 σ

CMS-PAS-TOP-21-005

expected significance: 3.2 σ observed significance: 3.9 σ

top quark properties

- Now at LHC is possible to reach un-precedent precisions for the property measurements
- ✓ Now measured not only in ttbar but also in single top and tt+X events

ATLAS+CMS Preliminary	m_{top} summary, $\sqrt{s} = 7-13 \text{ TeV}$	Oct 2022
World comb. (Mar 2014) [2] stat	total stat	
total uncertainty	m _{top} ± total (stat ± syst)	vs Ref.
LHC comb. (Sep 2013) LHCtop WG	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [1]
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [2]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [4]
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.74)	8 TeV [6]
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]
ATLAS, I+jets	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]
ATLAS comb. (Oct 2018)	172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]
ATLAS, leptonic invariant mass	174.41 ± 0.81 (0.39 ± 0.66 ± 0.25)	13 TeV [9]
ATLAS, dilepton (*)	$172.63\pm 0.79\;(0.20\;\pm 0.67\pm 0.37)$	13 TeV [10]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [11]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [12]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [13]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [14]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [14]
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [14]
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [15]
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [14]
CMS, I+jets	172.25 ± 0.63 (0.08 ± 0.62)	13 TeV [16]
CMS, dilepton	172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [17]
CMS, all jets	172.34 ± 0.73 (0.20 ± 0.70)	13 TeV [18]
CMS, single top	172.13 ± 0.77 (0.32 ± 0.70)	13 TeV [19]
CMS, I+jets (*)	171.77 ± 0.38	13 TeV [20]
CMS, boosted (*)	$172.76 \pm 0.81 (0.22 \pm 0.78)$	13 TeV [21]
* Preliminary	(2) 20/04/1423 (9) 20/05/2005 00/053 (3) EPUC7 5 (2015) 13/0 (10) 27/14.26 (2016) 2020 00/05 (4) EPUC7 5 (2015) 13/0 (10) 27/14.26 (2016) 2020 00 (5) ATLAS-COLPC 40/14 (2016) 2016 (10) 27/14.26 (2016) 2020 (10) 27/14.26 (2016) 2020 (10) 27/14.26 (2016) 2	 [16] EPJC 78 [2018] 891 [17] EPJC 79 (2019) 968 [18] EPJC 79 (2019) 313 [19] arXiv:2108.10407 [20] CMS-PAS-TOP-20-008 [21] CMS-PAS-TOP-21-012
165 170	175 180 1	85
m _{to}	_{op} [GeV]	

ATLAS+CMS \s = 8 TeV	
tī asymmetry total stat	A _C ±(stat.)±(syst.)
ATLAS, I+jets	$0.0090 \pm 0.0044 \pm 0.0025$
CMS, I+jets (template) H+++ PRD 93 (2016) 034014	$0.0033 \pm 0.0026 \pm 0.0033$
ATLAS+CMS, I+jets	$0.0055 \pm 0.0023 \pm 0.0025$
CMS, I+jets (unfolding) H • H PLB 757 (2016) 154	$0.0010 \pm 0.0068 \pm 0.0037$
ATLAS, dilepton A ^{tt} _c	$0.021 \pm 0.011 \pm 0.012$
CMS, dilepton A ^{tt} PLB 760 (2016) 365 QCD NNLO (+ EW NLO) based on arXiv:1705.94169, JHEP 04 (2017) 071, JHEP 05 (2016) 034	0.011±0.011±0.007 0.0095 ^{+0.0005} _{-0.0007}
ATLAS, I+jets boosted ([A]y]] < 2 and m, > 0.75 TeV) PLB 756 (2016) 52 " QCD NLO (+ EW NLO) JHEP 01 (2012) 063	0.042 ± 0.019 ± 0.026 0.0160 ± 0.0004
dilepton asymmetry	
ATLAS, dilepton A ^{II} _C H H	$0.008 \pm 0.005 \pm 0.003$
CMS, dilepton A ^{II} PLB 760 (2016) 365	$0.003 \pm 0.006 \pm 0.003$
QCD NLO (+ EW NLO) PRD 86 (2012) p34p26	0.0064 ± 0.0003
-0.04 -0.02 0 0.02 0.	04 0.06 0.08
Ac	

Top mass Top spin Top polarisation Asymmetries B-fragmentation Color reconnection CP properties.....

Top mass

Direct

from reconstruct invariant mass of top quark decay products

- Most precise (~0.3 GeV)
- Depends on the details of the MC simulation

Indirect measure observable directly sensitive to m_t (e.g. σ_{tt})

Compare to theory prediction in well-defined renormalisation **scheme** (pole, MS, MSR)

"Third"

jet mass in boosted top decays can be calculated using SC-EFT

- CMS: tt+jets (36/fb)
- CMS: single top t-channel
- ATLAS ttbar soft muon tagging
- ATLAS ttbar dilepton

 ATLAS+CMS: m_t pole from combined σ_{tt} 7+8 TeV

- CMS: from tt+1j invariant mass
- CMS: : m_t running @NNLO revisited

CMS: top mass from boosted jet mass

CMS measurements CMS-PAS-TOP-20-008

✓ tt I+jets: profile LH fit to 5 observables in different event categories

 $m_{t} = 172.13^{+0.76}_{-0.77} \text{ GeV}$ $R_{m_{t}} = \frac{m_{\bar{t}}}{m_{t}} = 0.9952^{+0.0079}_{-0.0104}$ $\Delta m_{t} = m_{t} - m_{\bar{t}} = 0.83^{+1.79}_{-1.35} \text{ GeV}$

JHEP 12 (2021) 161

ATLAS measurements

Template method (similar to 8 TeV)

- DNN to select b/lepton pairings
- Select permutation with highest DNN score

Top mass using soft muon tag

- Invariant mass m_{lµ} sensitive to mt
- reduced sensitivity to JES

- \checkmark consistent at 2σ level with previous results
- Ttbar modelling is the largest challenge for future measurements
- Require input from theory and experiments

ATLAS-CONF-2022-058

arXiv:2209.00583

Summary: indirect measurements

Results obtained with different methods overall in good agreement

Theoretical advances needed

in order to obtain accurate and unambiguous results

Top mass from boosted jet mass

✓ XCone exclusive algorithm to reconstruct jets and sub-jets → improved resolution

 Dedicated calibration of FSR using substructure variables, and dedicated jet mass calibration

✓ Comparable precision to direct measurements

CMS-PAS-TOP-21-012

 $m_{
m t} = 172.76 \pm 0.22 \,(
m stat) \pm 0.57 \,(
m exp) \pm 0.48 \,(
m model) \pm 0.24 \,(
m theo) \, GeV$ = 172.76 \pm 0.81 GeV.

First top mass measurement in boosted regime.

Top polarisation

JHEP 11 (2022) 040

> Unfolded angular distributions to particle level compared to MC

W polarization in top events

✓ Probe of Wtb vertex New method in dilepton channel: mesure absolute and normalised differential distributions in $\cos \theta^*$

arXiv:2209.14903

Energy asymmetry in tt

EPJC 82 (2022) 374

✓ Asymmetry between the energies of top and anti-top

Measured in tt+j events in boosted regime

 $A_{E}(\theta_{j}) \equiv \frac{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) - \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) + \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}$

Angle between the jet and z-axis Effect increases with jet pT

 $\sigma^{\mathrm{opt}}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j} < 0)$

Search for new physics

Tool to search for new physics:

✓Many BSM models are expected to involve top quarks

Possible to perform direct searches for new resonances and FCNC

✓Use the precise measurements to set a limit on new operators in an EFT framework

CP violation in ttbar

✓ Construct 4 CP-sensitive observables $A_{CP} = \frac{N(O_i > 0) - N(O_i < 0)}{N(O_i > 0) + N(O_i < 0)}$, ✓ Define and measure asymmetry

i = 3, 6, 12, 14

Searches for FCNC

JHEP 02 (2022) 169

arXiv:2208.11415

arXiv:2205.02537

Improved limit by factors 3.3 to
 5.4 from previous analysis

Coupling	BR limits [10 ⁻⁵] Expected Observed		
$t \rightarrow u\gamma$ LH	$0.88^{+0.37}_{-0.25}$	0.85	
$t \rightarrow u\gamma \mathrm{RH}$	$1.20^{+0.50}_{-0.33}$	1.22	
$t \rightarrow c \gamma \text{LH}$	$3.40^{+1.35}_{-0.95}$	4.16	
$t \rightarrow c \gamma \operatorname{RH}$	$3.70^{+1.47}_{-1.03}$	4.46	

$\mathcal{B}(t)$	$r \to Zq)$ [10	$)^{-5}]$
tZu	LH	6.2
tZu	RH	6.6
tZc	$\mathbf{L}\mathbf{H}$	13
tZc	$\mathbf{R}\mathbf{H}$	12

Improved limit by factors 3 to 5 from previous analysis Improved limit by x2 from 8 TeV analysis

$$\mathcal{B}(t \to u + g) < 0.61 \times 10^{-4}$$

$$\mathcal{B}(t \to c + g) < 3.7 \times 10^{-1}$$

Large impact from systematics

$$\begin{array}{l} \mathcal{B}(t \to uH), < 0.94 \times 10^{-3} \\ \mathcal{B}(t \to cH) < 0.69 \times 10^{-3} \\ \mathcal{B}(t \to cH), < 0.79 \times 10^{-3} \\ \mathcal{B}(t \to cH) < 0.94 \times 10^{-3} \\ \mathcal{B}(t \to cH), < 0.19 \times 10^{-3} \\ \mathcal{B}(t \to cH), < 0.73 \times 10^{-3} \\ \mathcal{B}(t \to cH) \\ \end{array} \begin{array}{l} \mathsf{H} \to \mathsf{V}\mathsf{V} \end{array}$$

All searches except tgq are statistically limited

gained sensitivity by including regions sensitive to couplings in top production and decay

EFT fits: multidimensional management problem

- Many Top analysis include and even designed to provide EFT interpretations
- Global fit is the goal but there are many steps to go and
 - Practical difficulties
 - Different statistical methods (IBU vs FBU, PL vs toys, ...)
 - Proper treatment of statistical and systematic correlations
 - Measurements delivered on different timelines
 - ► Interpretations: different assumptions on "backgrounds"
 → EFT effects Hard without coordination!
 - Signal model :
 - SMEFT@LO or @NLO?
 - Which operators?
 - Linear/quadratic terms?
 - EFT uncertainties and validity constraints
 - Run 3 is a good opportunity to solve these issues and perform a global fit across different physics groups and experiments

Run3 started!

CMS-PAS-TOP-22-012

Summary

✓ CMS and ATLAS provided many results with full Run2 dataset:

- High precision measurements
- Searching for very rare processes
- Measuring the top properties and couplings
- Setting constraints to new physics
- ✓ So far, all measurements of top quark showed good agreement with SM predictions
- ✓ What can we learn from Run2?
 - Theoretical advancements are still necessary to improve simulation and to understand / reduce uncertainties
 - Machine learning has significant role in top physics!
- ✓ What do we expect for Run3?
 - > Measurements in t(t)+X final states and FCNC searches are statistically limited
 - More data will allow for reaching higher jet pT or higher masses sensitive to BSM and EFT parameters

More results with more data are coming.....

References

- ♦ LHCTopWG <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG</u>
- ♦ ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
- CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>

Backup

OPERATORS AND PHYSICS IMPLICATIONS

Differential and double-differential $\sigma(t\bar{t})$ in lepton + jetsXiv:2108.02803

2 tight b jets

reconstruction

resolved

1 tight b jet

resolved

1 loose b jet

reconstruction

boosted t_h resolved t

separate for e and μ channels separate for 3 years of data mbination fit of cross sections

boosted t_h boosted t

Boosted background subtraction using template fit of H

- ✓ High precision measurement of differential and doubledifferential cross sections
- ✓ For the first time the full spectra of differential cross sections are determined
 - -- combine of resolved and boosted tt topologies

Most of the predictions are in good agreement with the measurement, except:

- → $M(t\bar{t})$ vs. pT(th) and pT(t\bar{t}) vs. pT(th) shows largest disagreements.
- ➤ At particle level add. jets vs. kinematic observable are difficult to describe by NLO.

Inclusive cross section: 791 ± 1 (stat.) ± 21 (syst.) ± 14 (lumi.) pb

- ✓ most precise measurement in lepton + jets channel
- Dominanted by: JES and b-tagging

ttcc/bb and *ttjj* production

PLB 820 (2021)

Lepton+jets

tīLF

0.2

0.4

0.6

0.8

b tagging discriminant (2nd additional jet) 0 0 0 8 0 -

n

0

- Test the state-of-art predictions at NLO
- Irreducible background to $ttH, H \rightarrow bb$
- *ttbb* and *ttjj* measurement
- $\sigma_{t\bar{t}bb}$ and $\sigma_{t\bar{t}bb}/\sigma_{t\bar{t}jj}$ extracted simultaneously from a 2D discriminant
 - PowhegPythia8 and MG_aMC@NLO+Pythia8 provide the best description
- First measurement of $t\bar{tc} \epsilon$ production
 - Simultaneous extraction of $\sigma_{t\bar{t}bb}$, $\sigma_{t\bar{t}c\bar{c}}$ and $\sigma_{t\bar{t}LL}$ using a template fit procedure

СМ5 Сил Панала (2020) 1235 ге V

0.04

0.03

0.02

0.01

tW production in l+jets CMS-PAS-TOP-20-002

- Categories based on jet multiplicity and 1 b-tagged jet: 2J1T (W+Jets). 3J1T (tw Signal region) and 4J1T (ttbar)
- Data-driven background
- One BDT is trained per lepton flavor in signal (3J1T) region and evaluation in all regions
- Simultaneous ML fit performed in all categories using BDT discriminants
- ✓ Dominant uncertainty:

Background estimation, JES and modeling

Measured (expected) signal strength:

 $\mu = 1.24 \pm 0.18 (1.00 \pm 0.17)$

Cross section:

 σ_{tw} = 89 ± 4 (stat.) ± 12 (syst.) pb

$$\sigma_{\rm SM}$$
 = 72 ± 4 pb

✓ Observed (expected) significance is
 7.4 (6.8) standard deviations

First observation of tW production in *l***+jets**

Inclusive and differential tZq

- ✓ Full run2 dataset
- \checkmark 3 leptons with improved lepton MVA
- ✓ constraining nonprompt background

0

✓ multiclass NN or BDT

Inclusive tZq cross-section:

 $\sigma_{\rm tZq} = 87.9 \ ^{+7.5}_{-7.3}$ (stat) $^{+7.3}_{-6.0}$ (syst) fb .

$$A_\ell = 0.58 \; {}^{+0.15}_{-0.16}$$
 (stat) ± 0.06 (syst)

Agreement with SM prediction:

Differential tZq cross-section:

In general, observe good agreement between measurement and prediction.

CMS-PAS-TOP-20-010

Rare top production: $t\bar{t}V$

arXiv: 2107.01508

ttZ production JHEP 03 (2020) 056

- Targets 3 or 4 isolated lepton channel with Z to l⁺l⁻
 Inclusive cross section already systematic limited
 σ(ttZ) = 0.95 ± 0.05 (stat) ± 0.06 (syst) pb
- Dominated by signal/background MC modelling
 Differential cross sections are measured fist time

tty production

- ✓ Measured in lepton+jets channel 800 ± 46 (syst) ± 7 (stat) fb,
- ✓ Precision limited by MC modelling
- Differential cross sections measured in several kinematic observables
- \checkmark Good agreement with SM prediction

Top polarisation

Top quarks in t-channel are strongly polarised

t-quark along spectator quark direction anti-t opposite incoming quark direction

Signal regions defined by sign of $\cos \theta_{li}$ and lepton charge

Template fit result: strong polarisation along z-axis

47

Machine learning in Top

Conclusions

- ML has significant role in top physics!
- Wide array of strategies and applications, very active field of research
 - CMS example [CMS-TOP-21-001]
 - ATLAS example [ATLAS-CONF-2022-049]
- Many new developments on-going
 - DCTR [PhysRevD.101.091901]
 - But also much more! E.g. [TOP22, M. Fenton]

Search for CP Violation

CMS-PAS-TOP-20-005

- > CP violation in SM is insufficient to describe the matter-antimatter asymmetry of the universe
- > In the SM, CPV in the production and decay of top quark pairs is predicted to be very small
- Simple CP odd observables

$$A_i = \frac{N(\mathcal{O}_i > 0) - N(\mathcal{O}_i < 0)}{N(\mathcal{O}_i > 0) + N(\mathcal{O}_i < 0)}$$

- > chromo-electric dipole moment (CEDM) of top quark in top pair production induces CPV
- ✓ Lepton + jets final states [137 fb⁻¹]
- \checkmark Observables; O₃, O₆, O₁₂ and O₁₄
- ✓ Top quark and antiquark candidates are reconstructed usin($\frac{\chi^2}{2}$ a χ^2 sorting algorithm
- ✓ The background contribution in the signal region is estimate generation from a fit to the mass distribution
- > There is no significant evidence of CPV in each observable
 - Consistent with the SM prediction

			$A'_{CP}(\%)$	
	/	e + jets	$\mu + jets$	Combined
	<i>O</i> ₃	-0.071 ± 0.149 (stat.) $^{+0.092}_{-0.058}$ (syst.)	$-0.035 \pm 0.120(\text{stat.})^{+0.022}_{-0.094}(\text{syst.})$	$-0.048\pm0.094({ m stat.})^{+0.041}_{-0.065}({ m syst.})$
	06	-0.167 ± 0.149 (stat.) $^{+0.077}_{-0.038}$ (syst.)	-0.111 ± 0.120 (stat.) $^{+0.042}_{-0.093}$ (syst.)	$-0.131 \pm 0.094(ext{stat.})^{+0.049}_{-0.068}(ext{syst.})$
(O ₁₂	$-0.039 \pm 0.149({ m stat.})^{+0.056}_{-0.090}({ m syst.})$	$+0.163 \pm 0.120(\text{stat.})^{+0.038}_{-0.065}(\text{syst.})$	$+0.090\pm0.094({ m stat.})^{+0.034}_{-0.053}({ m syst.})$
(O ₁₄	$-0.186 \pm 0.149 (\text{stat.})^{+0.075}_{-0.065} (\text{syst.})$	$-0.162\pm0.120({ m stat.})^{+0.117}_{-0.032}({ m syst.})$	-0.171 ± 0.094 (stat.) $^{+0.085}_{-0.023}$ (syst.)

Measurement of the y^t

- ✓ Measure the Yukawa (y^t) coupling in tt production.
 - \checkmark Exploit the large effect that the radiation of a virtual H bosc
 - tt predictions for different values of y^t obtained as event-based m HATHOR:
 - Applied on POWHEG predictions

$$R_{\rm EW}(M_{\rm t\bar{t}},\Delta y_{\rm t\bar{t}}) = \left. \frac{d^2 \sigma_{\rm HATHOR}}{dM_{\rm t\bar{t}} \, d\Delta y_{\rm t\bar{t}}} \right/ \frac{d^2 \sigma_{\rm LO \ QCD}}{dM_{\rm t\bar{t}} \, d\Delta y_{\rm t\bar{t}}}$$

g -0000000000

 \checkmark The comparison with an additive approach is taken as uncertainty

00000000

tt forward-backward asymmetry

JHEP 06 (2020) 146

θ'

NLO interference terms in triproduction from qq initial state creates a forward-backward asymmetry.

$$A_{
m FB} = rac{\sigma(c^*>0) - \sigma(c^*<0)}{\sigma(c^*>0) + \sigma(c^*<0)}$$

qq

qg gg

0.08

0.07

0.05

0.04

0.03 0.02

0.01

qq qg

ල<u>ි</u>0.025

0.02

0.015

0.01

0.005

fraction/10 GeV

0.03

0.02

0.01

Fitted $A_{FB}^{(1)}$ 9.0

0.4

0.2

-0.2

-0.4

-0.6

-0.4

0

0_1 -0.8 -0.6 -0.4 -0.2 0

- Quantity never measured before @LHC, where the charge asymmetry is measured as a proxy
- Use variables sensitive to the difference between gg, gg and gg initial state to build templates and separate the qq
- and chromegenetics dipple creeners in the 1+jets channel Extract A 0.03 POWHEG
 - Both resolved and boosted topologies.
 - Profile likelihood-fit to the 3D template to extract AFB and the anomalous moments separately

W polarization in ATLAS and CMS

- ✓ Combination of the W boson polarization in top quark decays, on Run1(8 TeV, 20fb⁻¹) data.
 - ✓ W boson polarization determined by the V-A structure of the tWb vertex

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{3}{4}\left(1-\cos^2\theta^*\right) F_0 + \frac{3}{8}\left(1-\cos\theta^*\right)^2 F_\mathrm{L} + \frac{3}{8}\left(1+\cos\theta^*\right)^2 F_\mathrm{R}$$

JHEP 08 (2020) 051

- Combination of the polarization fractions from 4 measurements
 - Combination Improvement > 20% wrt the most precise measurement
 - Measurement used to set limits on the anomalous coupling in the tWb vertex

		95% CL interval			
10	Coupling	ATLAS	CMS	ATLAS+CMS combination	
3- -	${ m Re}(V_{ m R})$	[-0.17, 0.25]	[-0.12, 0.16]	[-0.11, 0.16]	
	$\operatorname{Re}(g_{\mathrm{L}})$	$\left[-0.11, 0.08\right]$	$\left[-0.09, 0.06 ight]$	[-0.08, 0.05]	
	${ m Re}(g_{ m R})$	[-0.03, 0.06]	$\left[-0.06, 0.01 ight]$	[-0.04, 0.02]	

Mass measurement in single top events

CMS-PAS-TOP-19-009

Search for FCNC in the top sector

- Flavor changing neutral currents (FCNC) allow for transitions between quarks of different flavor but same electric charge
- > FCNC processes are highly suppressed in the SM due to the GIM mechanism
 - > Small contributions appear at one loop level
- Many extensions of the SM predict the presence of FCNC and give rise to detectable FCNC amplitude

	SM	QS	2HDM	FC $2HDM$	MSSM	R SUSY
$t \to u Z$	8×10^{-17}	$1.1 imes 10^{-4}$		-	$2 imes 10^{-6}$	3×10^{-5}
$t \to u \gamma$	3.7×10^{-16}	7.5×10^{-9}	1000	-	2×10^{-6}	1×10^{-6}
$t \to ug$	3.7×10^{-14}	$1.5 imes 10^{-7}$		-	$8 imes 10^{-5}$	$2 imes 10^{-4}$
$t \to u H$	2×10^{-17}	4.1×10^{-5}	5.5×10^{-6}	-	10^{-5}	$\sim 10^{-6}$
$t \to c Z$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 imes 10^{-6}$	3×10^{-5}
$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}
$t \to c H$	3×10^{-15}	4.1×10^{-5}	1.5×10^{-3}	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

Any evidence of FCNC will indicate the existence of new physics

Branching ratios for top FCN decays in the SM, models with Q = 2/3 quark singlets (QS), a general 2HDM, a flavour-conserving (FC) 2HDM, in the MSSM and with R parity violating SUSY.

Search for FCNC tHq interaction by

CMS-PAS-TOP-20-007

> Signal modeling: effective Lagrangian

$$\mathcal{L} = \sum_{q=u,c} \frac{g}{\sqrt{2}} \bar{t} \kappa_{Hqt} \left(F_{Hq}^{L} P_{L} + F_{Hq}^{R} P_{R} \right) q H + h.c.,$$

- Production & decay
- > Signal regions: 2 photons, 100 < $m_{\gamma\gamma}$ < 180 GeV
 - ➢ leptonic: ≥1 jet, ≥1ℓ
 - ▶ hadronic: ≥3 jet, ≥1 b-jet
- Strategy
 - > 8 BDTs: (u, c) × (lep, had) × (res, non-res bkg)
 - 7 categories defined by BDT score
 - > 14 $m_{\gamma\gamma}$ distributions to fit
 - Dominant uncertainties:

b-tagging and $\boldsymbol{\gamma}$ identification

- Data compatible with absence of signal
- Upper limits on the signal cross sections are translated to the strength of the tqH anomalous couplings and related branching fractions

Search for FCNC tHq interaction by

CMS-PAS-TOP-19-002

101 fb⁻¹ at √s = 13 TeV

b4j4

Other Bkg

Summer

ttlf

Unc.

CMS Preliminary

ttbb

Hct

ttcc

Data

Events / bir 5000

Data / MC

4000

3000

2000

1000

0.8

> Production bblecay

- > Signal region: 1ℓ , ≥ 3 jet, ≥ 2 b-jet
- A deep neural network is used to associate the reconstructed objects to the matrix-element partonic final state
- BDTs are used to distinguish the signal from the background event
- All bjet-jet categories are combined \geq
- No significant excess with respect to the SM background expectations: 95% CL limits are set on the xs, couplings and BRs
- Significant improve with respect to the early run-2 search

Search for CLFV interactions CMS-PAS-TOP-19-006

- > In the SM, lepton flavor is conserved in all interactions
- > Many new physics models predict sizable CLFV (neutrino mass, multi-Higgs doublet models,...)
- > If the new physics responsible for the CLFV is at scales beyond what the LHC can directly probe, the SM Lagrangian can be extended by dimension-6 operators $C = C_{max} + C_{max} + \sum_{n=1}^{\infty} \frac{C_n}{C_n}$
- ✓ Search for CLFV in $e\mu$ final state [137 fb⁻¹]
- Production & decay
- Signal: CLFV vector, scalar and tensor
- ✓ BDT is used to discriminate signal from BG events
- ✓ Data consistent with SM expectation
 - ✓ Upper limits are set at 95% CL

Asymmetry in tty and ttW

ttγ

Asymmetry from ISR/FSR interference Similar definition as in tt Much lower statistics, 2 bins

 $A_{c} = -0.006 \pm 0.024(stat) \pm 0.018(syst)$

in agreement with prediction from MG5aMC

$$A_c = -0.014 \pm 0.001$$
(scale)

ttW

Expected to be larger than in tt due qq initial state 3-lepton channel, lepton as proxy for top

Fiducial result unfolded to particle- $A_c = -0.112 \pm 0.170 \text{ (stat)} \pm 0.055 \text{ (syst)}$

in agreement with Sherpa NLO+EW simulation

Statistically dominated analyses, Run 3 data will help