Supersymmetry searches at the LHC

Run-2 result highlights from ATLAS and CMS

T. Cheng (Beihang University)

Supersymmetry

• Hirerachy problem/fine tuning

- **o** (Precise) Grand unification
- o LSP as Dark matter candidates
- Bring rich physics that may explain SM precision measurements such as muon g-2

Supersymmetry at the LHC

from LHC SUSY Cross Section Working Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

CLHCP 2022

Arsenal for SUSY searches at the LHC

teams in World Cup 2022 are not defeated so far as long as they have players from Arsenal.

Arsenal for SUSY searches at the LHC

Searches for standard model particles from SUSY particles cascade decays

- □Signal events with large missing E_T and/or high jet/lepton multiplicities/resonances
- Decay products with life time long enough to travel through detector subsystem(s)

Variety of techniques enhance sensitivity

- machine/deep learning to separate signal/background
- jet substructure to tag boosted heavy particle decays
- reconstruction with invisible particle
- multi-signal regions to cover different parameter space

Results from Run-2 data

□ Strong SUSY

□ Electroweak SUSY

□ SUSY searches through long-lived particle

Pair production of gluino/squark pair and its cascade decay

Final state with jets (and leptons), missing E_T

CLHCP 2022

Strong search SRs for the \tilde{g} -to- $\tilde{\ell}$, \tilde{g} -to- $Z^{(*)}$, and \tilde{q} - $Z^{(*)}$

• Signal signatures with multi-b and zero-b categories

 $\circ~$ Data driven background $\Delta \varphi$ and njets for background estimation

CLHCP 2022

arXiv:2211.08476

Strong SUSY : third-generation s-top

- Centrally relevant to *naturalness* problem
- Lightest squark in natural SUSY scenarios
- **D** More difficult to probe in compressed (low $\Delta m(\tilde{t}, \tilde{\chi} 0)$) spectra

- Dedicated search with parametric DNN to discriminate signal from tt background in which the top squark and neutralino masses are introduced in the training.
- ☐ In this way, a specific model for each signal point training a single DNN is achieved.

Strong SUSY searches : third-generation s-top

Eur. Phys. J. C 81 (2021) 970

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ SupersymmetryPublicResults

R-parity violation and stealth SUSY

RPV SUSY

Additional interaction terms that do not conserve B or L

LSP is not stable i.e. can decay to SM particles

Stealth SUSY : models with hidden sector

- □ S-fermion and scalar are very close in mass as SUSY is broken softly in hidden sector
- □ Top squark could decay through this hidden sector into SM particles

Challenges:

- Low MET → largely unexplored phase space but also large SM background
- **High jet multiplicity** → hard to model, need data-driven estimates

ATLAS Eur. Phys. J. C 81 (2021) 1023 CMS Phys. Rev. D 104, 032006 (2021)

Electroweak SUSY searches

□ Direct production of **charginos** and **neutralino**: mixed states of W, Z e H bosons superpartners

□ Direct production of **sleptons:** leptons superpartners

Small cross section compared to strong production, portion of the phase space not explore yet has challenging signature

Electroweak SUSY : chargino/neutrolino

□ Final state with two leptons, at least 2 jets and missing E_T

- Recursive jigsaw reconstruction is used to estimate the invisible particle's momenta
- Control region validate the background estimation in signal region : no signal evidence

arXiv:2204.13072

Recursive Jigsaw reconstruction

□ method for decomposing per-event measured kinematic variables

□ achieved by approximating the rest frames of intermediate particles

□ minimize the model dependency,

mainly assumption is the canonical form of the decay tree structure

CLHCP 2022

Electroweak SUSY : chargino/neutrolino

WZ final state in ATLAS

Gauge Mediated SUSY breaking with higgsino NLSP

21

higgsino LSP with multi-leptons in the final state

Disappearing tracks when chargino has long life-time (compressed mass spectrum)

arXiv:2201.02472

SUSY searches are one of the most challenging scenarios at the LHC
Cross sections are small
Complicated matrix between signal scenarios (parameters/theories)

and analysis scenarios(final states)

ATLAS and CMS are improving previous limits of and exploring portion of the phase space not covered before

Backup

Gauge Mediated SUSY breaking with higgsino NLSP

