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* HL-LHC will start in ~ 2029, ultimate goal of 4000 fb-"
* Instantaneous luminosity 7.5x10°* cm=s™', 5~7.5x increase

* Average number of interactions per bunch crossing (pile-up events) ~ 200



ATLAS Phase-2 Upgrade

New Muon Chambers

* Inner barrel region with new RPCs, sMDTs, and TGCs
* Improved trigger efficiency/momentum resolution,
reduced fake rate

ATLAS

EXPERIMENT

Upgraded Trigger and Data Acquisition
System

+ Single Level Trigger with 1 MHz output

* Improved 10 kHZ Event Farm

Electronics Upgrades

* On-detector/off-detector electronics upgrades of
LAr Calorimeter, Tile Calorimeter & Muon Detectors

* 40 MHz continuous readout with finer
segmentation to trigger

Additional small upgrades
* Luminosity detectors (1% precision)

* HL-ZDC (Heavy lon physics)

New Inner Tracking Detector (ITk)
* All silicon with at least 9 layers up to |n| = 4

* Less material, finer segmentation

High Granularity Timing Detector
(HGTD)

* Precision time reconstruction (30 ps) with
Low-Gain Avalanche Detectors (LGAD)
* Improved pile-up separation and bunch-by-bunch

luminosity




Inner Tracker (ITk) Detector




Inner Tracker (ITk) Strips Silicon Tracker

e All-silicon Inner Tracker (ITk) with extended
coverage ( |n|<4) to improved the tracking
performance

* IHEP and THU committed to deliver 1000 strip
barrel modules (10m? of sensor surface)

* 10% of total strip barrel modules
(US 50% + UK 40%)

* Additional contributions to strip barrel system
integration, installation and commissioning

Objectives

 High performance Strip detector module production
T » Radiation hard sensor and readout ASIC study
b~ 500 1000 1500 2000 2500 3000 3500 * Complex silicon detector system integration
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HEP Site Module Production Status <&

Passed Pre-Production A Module SQ
Produced two PPA strip modules

X. Shi as UK/China cluster manager for 50% barrel
production

Aim to pass all SQ steps by 2022
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Radiation Hard Strip Sensor Study

» Carried out one irradiation with two fluence points on
Dec 2021

* Reported on the collaboration meeting Feb 2022
* Approved as a Qualification Task by ATLAS ITk on Mar

the Associated Proton Experiment Platform (APEP) in
China Spallation Neutron Source (CSNS) for ITk strip
sensor production quality assurance (QA)

» Working on the second irradiation with controlled
temperature and relative humidity

beam energy [MeV]  proton fluence [p/cmzls] Conversion factor neutron fluence [neq/cmz] total proton fluence [p/cmz] run time [h]
80 3.40E+09 1.427 2.02E+14 142E+14 11.59
80 3.40E+09 1.427 1.03E+15 7.23E+14 59.09



Radiation Hard ASICs Study

* The ABCStar (ATLAS Binary Chip) front | &= %
end readout ASIC for strip sensor "

* Process of signals from 256 silicon strips ==
with multi-trigger data flow control

* Key component of ITk strip module,
~300,000 needed for production

* TID studied with X-ray machine at IHEP
 Carried first SEE test at CSNS in 2022

* Further SEE test for the latest chips:
ABCStarV1, HCC and AMAC




RAL Site Module Production and Stave Loading <&

* Two FTEs from IHEP based at RAL (one postdoc + one student)
* Contributed to RAL site module production and stave loading

* Contributed to beam test and analysis

* Active on tools design tweak, cold noise study, wire bond V |
oscillation test, etc

o o o

* Involve in the tracker system integration in the future

************

o o o




High Granularity Timing Detector (HGTD)
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High Granularity Timing Detector (HGTD)

Hard-scatter jet

Improve the forward region with increased pile-up Surkums

Jet from
pile-up

Improve time resolution by two orders of magnitude
* Several nano seconds to 30 pico-seconds

Millimeter granularity and 3M readout channels

Pile-up Hard scatter

Target irradiation fluence: 2.5x10" ng,/cm?

* Located between barrel and endcap calorimeters
(|z| = 3.5 m)

e Silicon detector modules mounted on disks

Double sided
layers

* Two sensor layers/disk

* Two disks/side

* Active area: 12 cm <r < 64 cm
* Coverage: 2.4 < |n| <4.0

11



China contribution in HGTD

* 34% of LGAD sensors (IHEP-IME, USTC-IME) * Project leader
e HGTD risk and schedule coordinator

e |2 Sensors coordinator

* 100% module flex electronics

* 50% module hybridizati
module hybridization « L2 Module coordinator

* 44% module assembly L3 Module flex coordinator

(0) .
* 50% module supports « L2 software coordinator
* 33% flex cables * L3 Peripheral electronics coordinator
* 67% design/100% production peripheral electronics * L3 High Voltage coordinator
: « HGTD Speakers committee Chair
* Low voltages power supplies
. , B0 Sensor performance
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HGTD Management Contribution from China
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LGAD Sensor R&D

* IHEP and USTC developed radiation hard LGAD

* Reach 30-50ps after 2.5x10'> n,,/cm?

* Significant more radiation hard than HPK sensor
* Passed ATLAS market survey > 34% to HGTD
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LGAD sensor performance

* LGAD sensors ~100% efficiency in test beam after irradiation
* Both for IHEP and USTC

* Passed single-event-burnout test at CERN test beam

ATlLAS| HCT?TD‘ Prelimi]nary Test Beam ATLAS HGTD Preliminary Test Beam
N L L L L L N L L e N DL L DL L L B

E C ] 1 00 ' 110 | I
. o . o
E og- Efficiency (%) IHEP-IMEV2-W7Q2 1 o, S :
> C . ] a 100 B ‘/*_:*)“4.*':::‘__.'_..--. —:
0.6 . . — —80 S | s
0.4 — 70 ‘f;_) 90 /,/* ]
N ] LLJ ! ¥ -
0.2— — =160 80 ¢ ]
- B 1. i 1
0 sl Bl i o )
- i 70| Irradiation = 1.5x10"ngqcm=2 -
-0.2— —140 i 1
—0.41- 30 60 e FBK-UFSD3.2-W19 (-40 to -30°C, DESY 2022) |
0.6/ 20 e ~4- USTC-IMEV2.1-W17 (-39 to -24°C, DESY 2022) -
-o.sf— 1.5x10"n,qem Sensor Efficiency 10 } -%- |HEP-IMEv2-W7Q2 (-43 to -30°C, DESY 2022) -
: 40—1 | l L L Il | I L L L L I | | | L I L L | | l L L L | I | L L L I Il | | L I l—
1| | L1 1 | 11 ‘ 11 ‘ L1 ‘ L1 1 ] 111 ‘ 111 l L1 l L1 1
08 06 o4 o5 0 o5 o4 oe o8 0 200 250 300 350 400 450 500 550

Bias Voltage[V]
X [mm]



HGTD module production

* China will produce ~4000 modules (44%)

* 6 module production sites:
IHEP, USTC, Germany, France, Spain, Morocco

* IHEP is the largest production center (34%)

* IHEP developed 15t module in HGTD
with automatic assembly procedure

* Module Flex design and production

e« USTC will deliver 10% modules
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Peripheral Electronics and DAQ Demo System = .

Peripheral Electronics Boards

* Design and test each sub-module circuit [pGBT&VTRx+,
bPOL12V, MUX64

* Pass the proton irradiation test at CSNS

* Demonstration System
» Complete prototype demonstration system rower block wiout shied
* Full chain readout from front-end modules to back-end TDAQ
 Small-lot production and delivery to collaboration
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Highlights from SDU

Frontend ASICs Test

» Adapter board design and tests

* V1 and V1.1 for single ALTIROC ASI(
e V2 for detector module test

* Tests include thickness, length, impedance, voltage-drop
» Solved over-thickness of both ends for the flex




Highlight from SJTU/TDLI

* Setup 45m? clean room, and probe station
(- 40 °C ~ 50 °C) iw

e Contributed to LGARD sensors I-V/C-V
performance test with USTC

* Also working on DarkSHINE tracker R&D,

S silicon strips using LGARD.
—=— Sensor 4 g T
—=— Sensor1 L

TR B
150
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Muon Resistive-plate chambers (RPC)

Thin-gap chambers (T&C)

Cathode strip chambers (CSC)

iy
A

\\ L\

....

Barrel toroid

' Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)
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Overview of Phase-Il RPC upgrade

* Honeycomb readout panel - Built full BIS size (1706x1070 mm) panels,
the flatness of the Readout panel < 100um, satisfy the design requirement

* Double-end readout method - Validated with real phase Il RPC electronics,
the resolution meet the design requirement

« R&D on RPC signal integrity - Simulation of signal transmission
* RPC gas gap production

* In the coming mass ﬁroduction, Chinese cluster will construct singlets of
BIS type (~300) + BIL type (~60).

21



The honeycomb readout panel

 Assembly procedures:
« Sticking X shape tape on the PCB, and mix the epoxy glue
* Spreading Araldite 2011 glue on the PCB

* Gluing Aramid paper honeycomb on the PCB with the vacuum bag -—!.-‘
* Aligning 2PCBs + honeycomb layers ;

* Gluing 3 layers (2PCBs + honeycomb) with the vacuum bag
* Quality check

* The flatness of the readout panel in 10 cm * 10cm less than 100 um j

2d mesurements results Thickness difference

data-JC-107-170.5-ARA139-189

Mean = 0.031

# of Bad Points = 0

;HlFlatness <0.1 mm

L LT Lo Lo v b v v 1w a1
0.05 0.1 0.15 0.2 0.25 0.3
Thickness difference [mm]
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* Motivation
» To check if FEE works properly in double-end scheme
* To check the space resolution performance

* Experimental setup

* FEE board: chip-based, which will be used in RPC
Phase Il upgrade

» 12

* 32 BIS7s RPC gives reference position 1.
« TDC: V1190 (100 ps resolution)

 Reconstruction

Channel 3
2 160

* Reconstructed hit position: x" = (T2-T1)*v/2
* Reference position x is the center of the reference strip

* Results: meet the requirement (<2cm)

i ETIE E E  S E



Simulation of signal propagation

 Motivation: \nsys WOLFRAM

* Suppress the cluster size in the RPC readout R My
* Focusing on the signal integrity during propagation process:

reflection and crosstalk PIRUSREEL
¢ Meth Od: Impedance [Q] Bare strip  Assembled
* Lossless Multi-conductor Transmission Line theory
* Software simulation: MAXWELL + Mathematica Measurement | sead | RSRL
* Impedance and crosstalk calculated and validated 3 183
* Results:

* Suppress reflection: the value of matching resistor should equal
the strip impedance

* Suppress crosstalk: the guard strips reduce the crosstalk
amplitude from 6% — 5%

* Applicable to differentgeometries and novel readout schemes, o
such as double-end and n—n readout

— Simulation

* Measurement

S-parameter
o
=
(2]

‘III|I|II\Illlllll\llllllllllll\l
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- ) . S :
See also Zirui'’s talk “R&D of RPC signal transmission R T T R =
Frequency [MHz]
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Gas-gap production

 Assembly procedures:
Glass and platform cleaning
Gluing the gas distributer to the glass

Gluing the spacers on the glass with distance
of 10 Cm

1
2
3
4. Gluing the frame on the glass

5. Put another glass on the spacers/frames
6

/

38

Press the gas-gap for at least 6 hours
Graphite coating

bond the PET film to the Graphite layer




RPC spacer optimization in S§JTU

* Multiphysics simulation:
* Based on COMSOL Multiphysics software

« Simulated the gas velocity, gas vorticity, electrode
deformation of two different spacer configuration RPCs

* Experiment setup

* Built glass RPC chamber based on new design

* Tested under cosmic ray
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JINST 16 P12022 (2021)

Achieved

* Optimized the gas velocity &
vorticity distribution

« Maintained similar electrode
deformation distribution

* Decreased the spacer number
by«»2096
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Summary

* ATLAS Phase-2 upgrade to meet the challenge of HL-LHC

» China clusters actively participating in several sub-detectors
* Inner Tracker (ITk)
 High Granularity Timing Detector (HGTD)
* Muon Resistive-place Chambers (PRC)

* Achieved significant progress
and taking some leading roles

« HGTD PL, ITk UK/China CM, etc ...

EXPERIMENT
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Back up
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barrel New Small Wheel (NSW)
muon chambers muon chambers

T

barrel toroid magnet
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endcap
muon chambers

inner detectors

endcap toroid
magnet

endcap calorimeters

barrel electromagnetic calorimeter

solenoid magnet
barrel hadronic calorimeter
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Liquid Argon Calorimeter Phase-| Upgrade

* LAr Phase-l upgrade expanded the readout

granularity by introducing the new readout
“Super Cells (SCs)” instead of “Trigger Towers
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Current readout: NEW readout:

= AnxA¢=
Trigger Tower: Super Cell: I0_1 x0.1
AnxA¢$=0.1x0.1 o 4 layers, 10 SCs  anxa¢=
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anxse = 01201 B AT‘XA¢_ 4SC  ad
s 0.025x0.1 o
° 8 Anxag= 4sc -“0%
%0 - 0.1x0.1 o M'.:'ol-nm.n ,,QL'?
» 1sc .
7 >

9

LAr electronics upgrade extends the legacy system with new
Front-End and Back-End components, computes and delivers

the SCs ET to the new L1 trigger system.

In parallel, another local monitoring path is developed to
validate the condition of all Super Cells of LAr calorimeters:
Cover all components: (EMB, EMEC, HEC and FCal)

Under different calibration modes (Pedestal, Ramp, Delay)
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Keywords:
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Transimpedance Amplifier (TIA)
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Transient Current Technique (TCT)

PAPER - OPEN ACCESS

The Low Gain Avalanche Detector (LGAD) is a novel Silicon detector with precise timing and fast response.
To study the transient response of LGADs, we need to obtain the detector signal using Transient Current
Technique (TCT), for which a preamplifier with high bandwidth and low noise is required. Currently, the
most widely used preamplifier board in the LGAD community is developed by University of California, Santa
Cruz (UCSC). In this paper, we will introduce a newly designed LGAD preamplifier board. Compared with the
UCSC board, the performance has been fully improved. The board contains a transimpedance amplifier and
two-stage voltage amplifiers. The total charge gain of our preamplifier reaches 20.58 mV ns/fC, with good
linearity in the input dynamic range of [0.7 fC, 66 fC]. The —3-dB bandwidth is about 870 MHz, meeting the
d ds of LGAD lification. We conducted®Sr f-scope tests using our preamplifiers and HPK 3.1 single
sensors. The equivalent noise charge at 20 °C is 0.27 fC. The jitter contributed by our preamplifier is about 7.12
ps. The results show that our single-channel preamplifier has lower noise and better time resolution than the
UCSC boards. Besides, a 9-channel preamplifier board is developed for multi-pad LGAD readout. All channels
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ARTICLE INFO ABSTRACT

Keywords: The Low Gain Avalanche Detector (LGAD) technology is proposed for the ATLAS High Granularity Timing
Low Gain Avalanche Detector Detector (HGTD) and the CMS Endcap Timing Layer (ETL) towards the High-Luminosity Large Hadron Collider
Timing detector (HL-LHC), for which radiation hardness is one of the key requirements. In this paper we report results from the

Radiation hardness

5 measurements on LGAD sensors designed by the University of Science and Technology of China (USTC) and
Charge collection

fabricated by the Institute of Microelectronics of the Chinese Academy of Science (IME. CAS). These sensors
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Radiation hardness characterization of low gain avalanche
detector prototypes for the high granularity timing detector
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Abstract: The high granularity timing detector (HGTD) is a crucial component of the ATLAS phase II upgrade to cope
with the extremely high pile-up (the average number of interactions per bunch crossing can be as high as 200). With the
precise timing information (g,~ 30 ps) of the tracks, the track-to-vertex association can be performed in the “4-D” space.
The Low Gain Avalanche Detector (LGAD) technology is chosen for the sensors, which can provide the required timing
resolution and good signal-to-noise ratio. Hamamatsu Photonics K.K. (HPK) has produced the LGAD with thicknesses of
35 pum and 50 um. The University of Science and Technology of China(USTC) has also developed and produced 50 pm
LGADs prototypes with the Institute of Microelectronics (IME) of Chinese Academy of Sciences. To evaluate the irradi-
ation hardness, the sensors are irradiated with the neutron at the JSI reactor facility and tested at USTC. The irradiation ef-
fects on both the gain layer and the bulk are characterized by /-V and C-V measurements at room temperature (20 C) or
-30 °C. The breakdown voltages and depletion voltages are extracted and presented as a function of the fluences. The fi-
nal fitting of the acceptor removal model yielded the c-factor of 3.06x10° cm?, 3.89x10"* cm™ and 4.12x10™'* cm? for the
HPK-1.2, HPK-3.2 and USTC-1.1-W8, respectively, showing that the HPK-1.2 sensors have the most irradiation resistant
gain layer. A novel analysis method is used to further exploit the data to get the relationship between the c-factor and ini-
tial doping density.

Keywords: LGAD; HGTD; timing detector; silicon detectors
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