

ALICE detector upgrade

Zhongbao Yin (for the ALICE China Team)
Central China Normal University

The 8th China LHC Physics Workshop, Nov. 23-27, 2022, Nanjing

ALICE roadmap

Intermediate upgrade

Major upgrade

ITS3

ITS1 (In exhibition)

- 6 layers
 - 2 layers of Silicon Pixel Detector
 - 2 layers of Silicon Drift Detector
 - 2 layers of Silicon Strip Detector

ITS2

- 7 layers (3 IB + 4 OB) of pixel layers
 - ALPIDE MAPS
 - 12.5G pixels
 - 10 cm²

- 3 truly cylindrical pixel layers
 - 6 ultra-thin wafer-size curved sensors
 - Supported by carbon foam ribs
 - Air coolings

Cylindrical

ITS3 detector concept

Key ingredients:

- 300 mm wafer-scale sensors, fabricated using stitching
- thinned down to 20-40 μ m (0.02-0.04% X_0), making them flexible
- bent to the target radii (of 18 mm, 24 mm and 30 mm)
- mechanically held in place by carbon foam ribs

Mechanical mockup using silicon dummies

R&D on ITS3

- R&D on ultra-thin, bent Monolithic Active Pixel Sensors
- R&D on the 65 nm CIS process for tracking detectors
 - Learn technology features
 - Characterize charge collection efficiency
 - Validate radiation hardness
- R&D on stitching

R&D on ultra-thin, bent MAPS

Carried out with ALPIDE produced using 180 nm CMOS Imaging Process

- High-resistivity (> 1 kΩ cm) p-type epitaxial layer (25 μm) on p-type substrate
- Small n-well diode (2 μm diameter), ~100 times smaller than pixel => low capacitance (~fF) and low noise
- ► Reverse-bias voltage (-6 V < V_{BB} < 0 V) to substrate (contact from the top) to increase depletion zone around n-well collection diode
- Deep p-well shields n-well of PMOS transistors

https://doi.org/10.1016/j.nima.2021.166280

50 μm thick ALPIDE bent to 22 mm showed excellent efficiency in the beam test

R&D on the 65 nm CIS process for tracking detectors

Pixel prototype chips: APTS, CE65, DPTS

APTS

Matrix: 6x6 pixels Readout: direct analog readout of central 4x4 Pitch: 10, 15, 20, 25 μm

Total: 34 dies

ALICE ITS3 preliminary pitch = $10 \mu m$ Fe55 source measurements Plotted on 17 Jun 2022 pitch = $15 \mu m$ pitch = $20 \mu m$ pitch = $25 \mu m$ $I_{bias4} = 150 \, \mu A$ $I_{bias3} = 200 \, \mu A$ $V_{reset} = 500 \,\text{mV}$ 0.01 0.00 100 120 140 Seed pixel signal (mV)

Pixels of different pitches show similar results

- the charge collection is very efficient

CE65

Matrix: 64x32, 48x32 pixels Readout: rolling shutter

analog

Pitch: 15, 25 μm

Total: 4 dies

NIM A 1040 (2022) 167213

R&D on the 65 nm CIS process for tracking detectors

DPTS

Matrix: 32x32 pixels

Readout: async. digital with ToT

Pitch: 15 μm

Total: 3 dies

Good efficiency, but fake hit rate increases after irradiation

Threshold (via VCASB) (electrons)

2022/11/27 The 8th China LHC Physics Workshop

R&D on stitching

300 mm wafer

The simplified principle

What designed

Final circuit is a concatenation of different parts of the masks

Designing this is tricky

- critical aspects: yield + power distribution

Engineering run to prototype is prepared

- sensors expected for testing mid 2023

What fabricated

FoCal

Main goal:

- measurement of direct photon production at forward rapidity in pp and pPb to probe gluon density at small x, forward π^0 in pp, pPb, PbPb - constrain gluon nuclear PDF at small Bjorken-x (x<10⁻⁴): structure of protons and nuclei not well constrained experimentally

FoCal will go further forward than any other LHC experiments

FoCal detector design

FoCal-E

Si-W calorimeter with effective granularity ≈ 1mm²

20 layers: W(3.5 mm $\approx 1X_0$) + silicon sensors

- Two types: Pads (LG) and Pixels (HG)
- Pad layers provide shower profile
 - Pixel layers provide position resolution to resolve shower overlaps

Technical Design Report planned for 2023

The 8th China LHC Physics Workshop

FoCal-H

Hadronic spaghetti calorimeter

- Copper capillary tubes, length 110 cm $\sim 7\lambda_1$ (Length limited by space before compensator magnet)
- 1 mm scintillating fibres inside 2.5 mm Cu tubes
- Bundle fibres and readout with SiPM

FoCal-H prototype, 9 x (6.5 x 6.5 x 110 cm³)

FoCal-E module

Sketch

- module of ≈ 18 pad layer and 2 pixel layers
- sensitive area: 45 cm x 8 cm
- use edge of detector for services
- designed to be stacked vertically for full detector setup
- 22 modules in total

Length of active area ~45cm

- full area coverage with 2 x 3 strings of 15 ALPIDE sensors
- 90 ALPIDE sensors per layer
- 44 pixel layers, 3960 ALPIDE sensors

FoCal beam test results

FoCal prototype, SPS test beam Sep 2022

Scintillation light by HCal vs #pixel hits

The 8th China LHC Physics Workshop

ALICE3 (beyond RUN4)

To answer the remaining fundamental questions needs:

- precision measurements of di-leptons
- ⇒evolution of the quark-gluon plasma (QGP)
- **→**mechanisms of chiral symmetry restoration
- systematic measurements of (multi-)heavy-flavor hadrons
- →transport properties in the QGP
- → hadronization mechanisms from the QGP
- study of hadron interactions and fluctuations
- **→**interaction potentials and c-nuclei
- **⇒** susceptibility to conserved charges
- Novel and innovative detector concept
- Compact and lightweight all-silicon tracker
- Retractable vertex detector
- Particle identification systems
- Continuous read-out and online processing
- Improvement of pointing resolution and effective statistics

high-efficiency for heavy-quark identification and reconstruction of low-mass dielectrons vertexing close to the beam with unprecedently low material budget

large acceptance with excellent coverage down to low $p_{\!\scriptscriptstyle {\rm T}}$ excellent particle ID

Tracker -Vertex detector

R&D focuses on

- wafers-sized, curved sensors (same as for ITS3)
- advanced mechanics and cooling for integration inside beampipe (rotary petals, matching beampipe parameters, feed-through for services)

Ultimate performance

wafer-size, ultra-thin, curved, CMOS APS sensor

- 5mm radial distance from interaction point (inside beampipe, retractable configuration)
- unprecedented spatial resolution: σ_{pos} ≈ 2.5 μm
- ... and material budget ≈ 0.1% X₀ / layer

Tracker – Outer tracker

8+2x9 tracking layers (barrel + disks)
Build on experience with ITS2 and ITS3 (same CMOS process)

R&D focuses on

- module (O(10 x 10 cm²)) concept based on industrystandard processes for assembly and testing
- services: reduce (eliminate) interdependency between modules (for replacement of single modules)

60 m² silicon pixel detector

based on CMOS Active Pixel Sensor (APS) technology

- large pseudorapidity coverage: ±4
- compact: $R_{out} \approx 80$ cm, $z_{out} \approx \pm 400$ cm
- high-spatial resolution: $\sigma_{pos} \approx 5 \mu m$ (req. < 10 μm)
- very low material budget: X/X₀ (total) ≤ 10%
- low power: ≈ 20 mW/cm²

critically depends on integrated magnetic field and overall material budget

Particle identification: TOF and RICH

Barrel TOF ($|\eta| < 1.75$)

Outer TOF radius = 85 cm

surface: 30 m², pitch: 5 mm

Inner TOF, radius = 19 cm

surface: 1.5 m², pitch: 1 mm

Forward TOF (1.75 < $|\eta|$ < 4)

• Inner radius = 15 cm

Outer radius = 150 cm

surface = 14 m², pitch = 1 mm to 5 mm

$\sigma_{TOF} \lesssim 20 ps$

Two R&D lines

- CMOS LGAD (baseline): main R&D line in ALICE
- integration of sensor and readout in a single chip
- easier system integration and significant cost reduction (save 11.5 MCHF)
- Conventional LGADs (fallback): R&D line in ALICE with very thin sensors

Ring-Imaging Cherenkov

- Extend PID reach of outer TOF to higher p_T
- aerogel radiator to ensure continuous coverage from TOF
- → refractive index n = 1.03 (barrel)
- → refractive index n = 1.006 (forward)
- silicon photon sensors
- R&D on monolithic photon sensors

60 m² SiPM

EMCal, Muon ID and FCT

• Electromagnetic Calorimeter

- Large acceptance EMCal
- sampling calorimeter O(100) layers
 (1 mm Pb + 1.5 mm plastic scintillator)
- Additional high energy resolution
 segment at midrapidity or forward
- PbWO4-based

ECal module	Barrel sampling	Endcap sampling	Barrel high-precision
acceptance	$\Delta \varphi = 2\pi, \ \eta < 1.5$	$\Delta \varphi = 2\pi,$ $1.5 < \eta < 4$	$\Delta \varphi = 2\pi, \\ \eta < 0.33$
geometry	$R_{\rm in} = 1.15 \text{ m},$ z < 2.7 m	0.16 < R < 1.8 m, $z = 4.35 m$	$R_{\rm in} = 1.15 \text{ m},$ z < 0.64 m
technology	sampling Pb + scint.	sampling Pb + scint.	PbWO ₄ crystals
cell size	$30\times30~mm^2$	$40\times40~\text{mm}^2$	$22\times22~\text{mm}^2$
no. of channels	30 000	6 000	20 000
energy range	0.1 < E < 100 GeV	0.1 < E < 250 GeV	0.01 < E < 100 GeV

- Forward conversion tracker
- Thin tracking disks in 3
 < η < 5 in its own dipole field
- Very low p_T photons (≤ 10 MeV/c)

Muon ID

- Hadron absorber outside of the magnet
- ~70 cm non-magnetic steel
- Muon chambers
- search spot for muons ~0.1 x 0.1 (eta x phi)
- \rightarrow ~5 x 5 cm² cell size
- matching demonstrated with 2 layers of muon chambers
- scintillator bars with SiPM read-out
- resistive plate chambers

The 8th China LHC Physics Workshop

ALICE

Summary

- Intermediate upgrade for the LS3 will allow higher precision measurements:
 - ITS3: better pointing resolution, R&D is onging according to schedule
 - FoCal: first prototypes being tested, very good results from beam test data
- ALICE3 is proposed as a major upgrade for Run 5 and 6 to give better insight of the microscopic dynamics of the QGP:
 - Properties of the QGP
 - Chiral symmetry restoration mechanism
 - Hadronization and nature of hadronic states
- Innovative detector concept to meet the requirements for the ALICE3 physics program:
 - building on experience with technologies pioneered in ALICE
 - requiring R&D activities in several strategic areas

Thanks a lot for your attention!

Backup

FoCal timeline

	19	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
	Q4	Q1 Q2 Q3 Q4	Q1Q2Q3 Q4	Q1Q2Q3Q4							
LHC		LS2		Run-3				LS3			Run-4
Lol											
R&D											
Test beams (SPS, DESY, KEK)											
TDR											
Final design											
Production, construction, test of module											
Pre-assembly, calibration with test beam (KEK)											
Installation and commissioning											
Contingency											
Global commissioning and physics data taking											

Schedule:

2023: TDR

2023/2024: final design for production

2024-2027: production and calibration in beam

2027: installation

2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
J M S	J M S	J M S	J M S	J MS J	J M S	J M S	J M S	J MS	J MS	J MS	J MS	J MS	J MS	J M S	J M S	J MS				
	RU	JN 3			LS3			RUN	4		LS	4		RUN	15		LS5	R	UN 6	
ALICE 3 Lol	tec concep	3 select hnologi ot proto (25% fu	ies, otypes, unds)	engine	eered ypes, (75%		ALICE3 construction and testing + 1 y contingency					CE3 lation			А	LICE3 c	peratio	on		

ALICE3 core cost (without labor and contingency)

- 141.5 MCHF for the baseline
- 178.2 MCHF with present technologies
- Fair share for China team with 14 M&O members
 - 2.5% compared to 1.5% core contribution up to now (ALICE1 & ALICE2)
 - 3.5 MCHF (about 25 MCNY)