

Shu Li (李数) shuli@sjtu.edu.cn 27/11/2022

Chinese LHC Physics Workshop 2022 @ Nanjing

Dark Matter Evidence and Theory Context in a nutshell

- DM evidence from astronomical observations and gravitational effects:
 - Galactic rotation curves, Gravitational lensing, Cosmic Microwave Background anisotropies, ...
- Characteristics: Non-baryonic, massive, electrically neutral, gravitational, stable → WIMP context
- BSM models predict weakly interacting massive particle (WIMP) -> Dark Matter Candidate. In SUSY
 models, the lightest SUSY particle LSP is a candidate for dark matter. Being LSP stable in most Models.
- Any WIMP DM produced at collider experiments will interact weakly and pass invisibly through detectors. Inferred through 'Missing E_T' when event does not balance in plane transverse to beam.
 Particle and Nuclear Physics Division 粒子与核物理研究部

Frontiers that DM can reach out

Dark Matter Direct Detections

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XenonNT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter Indirect Detections

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XenonNT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter Collider productions

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XenonNT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter Models for LHC

Dark Matter Search programs at LHC

S-channel Mediator Simplified Models

Simplified model:

- Starting point to build complete theories
- Colliders can search for the mediator directly
- Benchmark model @ Run II

Two complementary approaches:

- Look for DM mono-X signature
- Look for mediator resonance search

Mono-Jet search (Jet + E_T^{miss})

ATLAS: <u>Phys. Rev. D 103 (2021) 112006</u> CMS: <u>JHEP 11(2021)153</u>

Mono-Jet search (Jet + E_T^{miss})

ATLAS: <u>Phys. Rev. D 103 (2021) 112006</u> CMS: <u>JHEP 11(2021)153</u>

• DM Mediator to Di-(b)jet search

粒子与核物理研究部

arXiv:2205.01835 (accepted by PRD)

• ttbar + E_T^{miss}

ATLAS-CONF-2022-007

Single Top + E_T^{miss}

ATLAS-CONF-2022-036

< 15 >

Interpretations in context of resonant/non-resonant and vector like quark

Particle and Nuclear Physics Division 粒子与核物理研究部 BDT (XGBoost) is used to discriminate signal/ background (E_T^{miss} based variables and ΔR_{max} among the most important features in the training)

• tW + E_t^{miss} (2HDM+a)

m_a [GeV]

(Axial-)Vector Mediator summary

(Pseudo-)Scalar mediator sensitivity summary

• Higgs portal to DM: invisible decays Phys. Rev. D 105 (2022) 092007

Observed Limit from the combination

 $\mathcal{B}(\mathrm{H} \rightarrow \mathrm{inv}) < 0.18 \, (0.12)$ at the 95% CL,

- Signature: Vector-Boson Fusion
- Two SR triggers:
 - MTR with missing momentum trigger
 - VTR with VBF jet trigger

Particle and Nuclear Physics Division

Higgs portal to DM: invisible decays

Analysis	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed 95% U.L.	Expected 95% U.L.
Run 2 Comb.	0.04 ± 0.04	0.113	$0.080^{+0.031}_{-0.022}$
Run 1 Comb.	$-0.02\substack{+0.14\\-0.13}$	0.252	$0.265_{-0.074}^{+0.105}$
Run 1+2 Comb.	0.04 ± 0.04	< 0.107	$0.077^{+0.030}_{-0.022}$

- Z to W ratio predictions @NLO QCD, NLO EW arXiv:2204.07652 - used to constrain Zjets with Wjets
- Probing BR($H \rightarrow Inv$) at 10% level

• Higgs portal to DM: Mono-H($\gamma\gamma$)

P

● Dark Higgs Search: s→WW semileptonic *arXiv:2211.07175*

- Two mediator model: Z' + Dark Higgs
- Utilize both resolved calorimeter-measured jet pair or merged from track-assisted reclustered jets
- Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

CMS-PAS-EXO-20-013

● Dark Higgs Search: s→WW fully leptonic

3-dimensional fit performed using ΔR , m_{II} and m_T

$$m_{\mathrm{T}}^{\ell\,\mathrm{min},p_{\mathrm{T}}^{\mathrm{miss}}} = \sqrt{2p_{\mathrm{T}}^{\ell\,\mathrm{min}}p_{\mathrm{T}}^{\mathrm{miss}}\left[1 - \cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\ell\,\mathrm{min}},\vec{p}_{\mathrm{T}}^{\mathrm{miss}})\right]}$$

● Dark Higgs → more Dark Portals connecting hidden sectors

- Dark Photon BSM extensions:
 - U(1) extension of the SM
 - Hidden gauge boson A' → kinetic mixing (ε) with the SM photon
 - the magnitude of ε affects production rate and lifetime

- Scalar portals dark Higgs
- Neutrino portal
- Axion portal

Dark Photon searches: ZH and VBF

粒子与核物理研究部

Dark Photon Search at LHCb

粒子与核物理研究部

Phys. Rev. Lett. 124 (2020) 041801

ATLAS-CONF-2022-038

Unconventional searches with semi-visible jets

 M_{Φ} [GeV]

JHEP 06 (2022) 156

李政道研究所

Unconventional searches with semi-visible jets

Unconventional signatures

More unconventional searches

- LLP, displaced vertices, displaced leptons and jets, disappearing tracks, stopped particles
- Connecting more general untouched dark sector signatures, enlightening DM new prospects

Summary

- LHC continues to deliver highly valuable physical results while Run-3 is started with new results in the pipeline
- Dark Matter mystery remains puzzling while collider searches provide sensitivity complementarity with noncollider DM searches
- Many hypotheses, diverse processes and signatures are broadly surveyed and searched for but by far no hints of Dark Matter
- Need to further diversify the data mining aspects in the collisions covering more unconventional signatures and untouched stones

谢谢!

