

Hao Zhang (张昊) IHEP, Yusheng Wu (吴雨生) USTC

On behalf of Program Committee

CLHCP, NNU, Nov.23-27, 2022

CLHCP2022 Best Poster Award (最佳墙报奖)

• Huanguo Li (NJU)

• Shiyi Huang (NNU)

• Shared: Qiyu Sha (IHEP), Zifeng Xu (NJU)

Chaochen Yuan (IHEP)

Thanks to the poster committee: Manqi Ruan, Xiaohu Sun, Lei Zhang

Awarded Posters

Measuring \mathcal{CP} properties of Higgs boson interactions with τ leptons in ATLAS detector

Huanguo Li, on behalf of the ATLAS collaboration

Main background in this analysis are mainly

Other backgrounds are estimated by Mon

The assumement of the deep conjugation and parity (CF) proportion is the Higgs boson interaction with τ bytems [I] The Valuess interaction is prescribed with a single relating unique consumer τ_0 to describe Crossilities assume the τ_0 to describe the results of the consumer and the consumer τ_0 to describe a consumer and the constant of CF-monitries angular observables defined by the visible decay products of τ begins decays, performed using a data ample corresponding to τ_0 and τ_0 and τ_0 and τ_0 are the constant of τ_0 and τ_0 and τ_0 are the constant of τ_0 and τ_0

1 Motivation the revolution of the universe. Currently we observe more matter than anti-matter in our universe known as the Baryon Asymmetry, which might be explained by the CP violation in the Baryogenesis. In SM the CP violation is explained by Kobayashi-Maskawa (KM) mechanics by introducing a non-

 $\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{-} \kappa_{\sigma} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{\Sigma} \tau) H$

The CP-mixing angle could be encoded in the correlations between the transverse spin co, ponents of the τ leptons then reflected in the directions of the τ lepton decay products:

 $d\Gamma_{H\to\pi\pi} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{\epsilon_C}\cos(\varphi_{CP}^* - 2\phi_{\pi})$ (2)

The observable defined as the acoplanarity angle between di- τ decay

- ρ methods for σ decay to both charged and neutral visible particles, define plans moneyal by charged track and neutral track.

alculte the angle between two normal vectors of the di-r decay planes

The observed and expected negative log-likelihood $(\Delta \ln L)$ scans in ϕ_* lisfavours the pure CP-odd hypothesis at 3.4 σ , while the expected exclusion limit is at 2.1 σ . The results are compatible with the SM expectation

 Λ 2D scan of $\Delta \ln L$ on the signal strength $\mu_{\pi\pi}$ versus ϕ_{π} showed that the 1- σ and 2- σ 2D confidence levels for $\Delta \ln L$ correspond to 1.15 and 3.09, respectively. No strong correlation is observed between $\mu_{\pi\pi}$ and ϕ_{π} . The M prediction $(\mu_{\pi\pi} = 1, \phi_{\pi} = 0)$ of $\mu_{\pi\pi}$ is compatible with the mea-vithin the 1- σ confidence region.

Measuring CP properties of Higgs boson interactions with τ leptons with the ATLAS detector. Technical report, CERN, Geneva, 2022.

Great Thanks to LOC from Nanjing Normal University!

Great Thanks to all speakers, all session chairs, all on-site & on-line participants!

This edition of workshop sets yet another example for holding hybrid conferences in difficult time

Looking forward to CLHCP2023

After receiving expressions of interests, the CLHCP program committee voted and decided that CLHCP2023 will be hosted by

Shanghai Jiao Tong University / T. D. Lee Institute

See you in 2023 @ Shanghai!