SU(3) symmetry and its breaking effective in charm baryon decays

Zhi-Peng Xing TDLI & SJTU

CLHCP 2022

Outline

• Introduction

- SU(3) symmetry in semi-leptonic charm baryon decays
- SU(3) symmetry in non-leptonic charm baryon decays
- Recent progress in the charm baryon decays
- Conclusion and outlook

PART 01

Introduction

TSUNG-DAO LEE INSTITUTE

The Standard Model

- The Standard Medel has shown the grest success in the past decades.
- The particle physics has entered the era of high precision.
- The precise test of Standard Model (SM) will help us find new physics or new particles indirectly

Precision test Standard Model

• Anomaly in B physics:

$$R_{K} \equiv \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})} = 0.846^{+0.042+0.013}_{-0.039-0.012},$$

$$R_{K^{*}} \equiv \frac{\mathcal{B}(B \to K^{*}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{*}e^{+}e^{-})} = 0.69^{+0.11}_{-0.07} \pm 0.05,$$

• Precision test in electroweak model

 $M_W = 80,433.5 \pm 9.4 MeV$

• Precision test of CKM matrix

charm baryon in experiment

Measurement of $\Lambda_c \rightarrow pK^-\pi^+$ decay **PRD 103, 072004(2021)** First observation of $\Lambda_c \rightarrow p\eta'$ JHEP 03 (2022) 090 First search for the weak radiative decays arXiv:2206.12517 $\Lambda_c \to \Sigma^+ \gamma \quad \Xi_c^0 \to \Xi^0 \gamma$

 $R(\Lambda_c) = 0.242 \pm 0.026 \pm 0.040 \pm 0.059$ PRL 128 (2022)191803

First observation of $\Lambda_c \rightarrow n\pi^+$ PRL128(2022)142001 First observation of $\Lambda_c \rightarrow p K^- e^+ \nu$

arXiv:2207.11483

SU(3) symmetry in QCD

• The SU(3) symmetry is the symmetry of three light quarks (u,d,s) in hadron states.

 Using this symmetry we can easily avoide the non-perturbative parts and complicated parts in QCD.

$$\Gamma(\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell) = \Gamma(\Xi_c^+ \to \Xi^0 \ell^+ \nu_\ell) = \frac{3}{2} \Gamma(\Lambda_c^+ \to \Lambda^0 \ell^+ \nu_\ell)$$

PART 02

SU(3) symmetry in semi-leptonic charm baryon decays

TSUNG-DAO LEE INSTITUTE

	ns	SU(3) relatio	
	SU(3) symmetry(%)	experiment data(%)	Channel
input data	3.6 ± 0.4	$3.6 \pm 0.4[1]$	$\Lambda_c \to \Lambda e^+ \nu_e$
input that	3.5 ± 0.5	$3.5 \pm 0.5[1]$	$\Lambda_c o \Lambda \mu^+ u_\mu$
$\int 2\sigma$ standard deviation	12.7 ± 1.35	$7\pm4[1]$	$\Xi_c^+ \to \Xi^0 e^+ \nu_e$
- 6σ standard deviation	4.10 ± 0.46	$1.54 \pm 0.35 [2,3]$	$\Xi_c^0 \to \Xi^- e^+ \nu_e$
5 σ standard deviation	3.98 ± 0.57	$1.27 \pm 0.44 [3]$	$\Xi_c^{0} ightarrow \Xi^- \mu^+ u_\mu$

Very large SU(3) symmetry breaking effect

SU(3) symmetry in semi-leptonic decays

$$\mathcal{A}(B_{c} \rightarrow B_{q}\ell^{+}\nu_{\ell}) = \frac{G_{F}}{\sqrt{2}} V_{cq}^{*} \langle B_{q} | \bar{q} \gamma^{\mu} (1 - \gamma_{5}) c | B_{c} \rangle \langle \ell^{+}\nu_{\ell} | \bar{\nu}_{\ell} \gamma^{\nu} (1 - \gamma_{5}) \ell | 0 \rangle g_{\mu\nu},$$

$$g_{\mu\nu} = -\sum_{\lambda=0,\pm1} \epsilon_{\mu}^{*}(\lambda) \epsilon_{\nu}(\lambda) + \epsilon_{\mu}^{*}(t) \epsilon_{\nu}(t)$$

$$\epsilon_{\mu}(t) = \frac{q^{\mu}}{\sqrt{q^{2}}},$$

$$\mathcal{A}(B_{c} \rightarrow B_{q}\ell^{+}\nu) = \frac{G_{F}}{\sqrt{2}} V_{cq}^{*} \left(-\sum_{\lambda_{w}=0,\pm1} H_{\lambda,\lambda_{w}} L_{\lambda_{w}} + H_{\lambda,t} L_{t} \right)$$

$$H_{\lambda,\lambda_{w}} = \langle B_{q} | \bar{q} \gamma^{\mu} (1 - \gamma_{5}) c | B_{c} \rangle \epsilon_{\mu}^{*}(\lambda_{w}),$$

$$L_{\lambda_{w}} = \langle \ell^{+}\nu_{\ell} | \bar{\nu}_{\ell} \gamma^{\nu} (1 - \gamma_{5}) \ell | 0 \rangle \epsilon_{\nu}(\lambda_{w}),$$

$$H_{\lambda,\lambda_{w}} = a_{1}^{\lambda,\lambda_{w}} \times (T_{c\bar{3}})^{[ij]} (H_{3})^{k} \epsilon_{ikm} (T_{8})_{j}^{m}$$

The SU(3) amplitude in semileptonic decays

Channel	Amplitude
$\Lambda_c^+ \to \Lambda^0 \ell^+ \nu_\ell$	$-\sqrt{\frac{2}{3}}a_1^{\lambda,\lambda_w}V_{cs}^*$
$\Lambda_c^+ \to n \ell^+ \nu_\ell$	$a_1^{\lambda,\lambda_w} V_{\rm cd}^*$
$\Xi_c^+ o \Sigma^0 \ell^+ \nu_\ell$	$\frac{a_1^{\lambda,\lambda W} V_{cd}^*}{\sqrt{2}}$
$\Xi_c^+ o \Lambda^0 \ell^+ \nu_\ell$	$-\frac{a_1^{\lambda,\lambda_W}V_{cd}^*}{\sqrt{6}}$
$\Xi_c^+ ightarrow \Xi^0 \ell^+ u_\ell$	$-a_1^{\lambda,\lambda_w}V_{cs}^*$
$\Xi_c^0 ightarrow \Sigma^- \ell^+ u_\ell$	$a_1^{\lambda,\lambda_w} V_{\rm cd}^*$
$\Xi_c^0 o \Xi^- \ell^+ \nu_\ell$	$a_1^{\lambda,\lambda_w} V_{cs}^*$

SU(3) symmetry in semi-leptonic decays

$$a_{1}^{\lambda,\lambda_{w}} = \bar{u}(\lambda) \left[f_{1}\gamma^{\mu} + f_{2}\frac{i\sigma^{\nu\mu}}{M_{i}}q^{\nu} + f_{3}\frac{q^{\mu}}{M_{i}} \right] u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}) \cdot - \bar{u}(\lambda) \left[f_{1}'\gamma^{\mu} + f_{2}'\frac{i\sigma^{\nu\mu}}{M_{i}}q^{\nu} + f_{3}'\frac{q^{\mu}}{M_{i}} \right] \gamma_{5}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}).$$

dominant suppressed by 1/mb

$$\begin{split} f_{i}(q^{2}) &= \frac{f_{i}}{1 - \frac{q^{2}}{m_{p}^{2}}}, \\ \frac{d\Gamma}{dq^{2}} &= \frac{(m_{\ell}^{2} - q^{2})^{2}\sqrt{\lambda}G_{F}^{2}V_{SU(3)}^{2}}{284\pi^{3}M^{3}(q^{2})^{3}} \bigg[(f_{1}(q^{2}))^{2} \times (3s_{+}m_{\ell}^{2}\left(q^{2} + s_{-}\right) + s_{-}\left(3q^{2} + s_{+}\right)\left(m_{\ell}^{2} + 2q^{2}\right)) \\ &+ (f_{1}'(q^{2}))^{2} \times (3s_{-}m_{\ell}^{2}\left(q^{2} + s_{+}\right) + s_{+}\left(3q^{2} + s_{-}\right)\left(m_{\ell}^{2} + 2q^{2}\right))\bigg]. \\ &+ s_{-} = (M - M')^{2} - q^{2}, s_{+} = (M + M')^{2} - q^{2} \qquad \sqrt{\lambda} = \sqrt{s_{-}s_{+}}. \end{split}$$

SU(3) symmetry in semi-leptonic decays

Table 3

Experimental and fit data of anti-triplet charmed baryons decays.

Channel	Branching ratio (%)		
	Experimental data	Fit data	
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	3.60 ± 0.40	1.94 ± 0.18	
$\Lambda_c^+ \rightarrow \Lambda^0 \mu^+ \nu_\mu$	3.5 ± 0.5	1.87 ± 0.176	
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	2.3 ± 1.5	6.53 ± 0.60	
$\Xi_c^0 \rightarrow \Xi^- e^+ \nu_e$	1.54 ± 0.35	2.17 ± 0.20	
$\Xi_c^0 ightarrow \Xi^- \mu^+ u_\mu$	1.27 ± 0.44	2.09 ± 0.19	
$\chi^2/d.o.f = 14.3$	$f_1 = 1.05 \pm 0.30$	$f_1' = 0.11 \pm 0.95$	

Need to consider the SU(3) symmetry breaking effect

SU(3) symmetry breaking from the quark mass

$$M = \begin{pmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix} \sim m_s \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = m_s \times \omega.$$

$$H_{\lambda,\lambda_W} = a_1^{\lambda,\lambda_W} \times (T_{c\bar{3}})^{[ij]} (H_3)^k \epsilon_{ikm} (T_8)_j^m + a_2^{\lambda,\lambda_W} \times (T_{c\bar{3}})^{[in]} (H_3)^k \epsilon_{ikm} (T_8)_j^m \omega_n^j$$

$$+ a_3^{\lambda,\lambda_W} \times (T_{c\bar{3}})^{[in]} (H_3)^k \epsilon_{kjm} (T_8)_i^m \omega_n^j + a_4^{\lambda,\lambda_W} \times (T_{c\bar{3}})^{[in]} (H_3)^k \epsilon_{jim} (T_8)_k^m \omega_n^j$$

$$+ a_5^{\lambda,\lambda_W} \times (T_{c\bar{3}})^{[ij]} (H_3)^k \epsilon_{inm} (T_8)_j^m \omega_k^n.$$

Amplitude:

$$\begin{split} \Lambda_{c}^{+} &\to \Lambda^{0}l^{+}\nu & -\sqrt{\frac{2}{3}}(a_{1}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}})V_{cs}^{*} & \Xi_{c}^{+} \to \Xi^{0}\ell^{+}\nu_{\ell} & -(a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}})V_{cs}^{*} \\ \Lambda_{c}^{+} &\to nl^{+}\nu & a_{1}V_{cd}^{*} & \Xi_{c}^{0} \to \Sigma^{-}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{3}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}})V_{cd}^{*} \\ \Xi_{c}^{+} \to \Sigma^{0}\ell^{+}\nu_{\ell} & \frac{(a_{1}^{\lambda,\lambda_{W}} + a_{3}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}})V_{cd}^{*}}{\sqrt{2}} & \Xi_{c}^{0} \to \Xi^{-}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}})V_{cs}^{*} \\ \Xi_{c}^{+} \to \Lambda^{0}\ell^{+}\nu_{\ell} & -\frac{(a_{1}^{\lambda,\lambda_{W}} + 2a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}})V_{cd}^{*}}{\sqrt{6}} & \Xi_{c}^{0} \to \Xi^{-}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}})V_{cs}^{*} \\ \Xi_{c}^{+} \to \Lambda^{0}\ell^{+}\nu_{\ell} & -\frac{(a_{1}^{\lambda,\lambda_{W}} + 2a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}})V_{cd}^{*}}{\sqrt{6}} & \Xi_{c}^{0} \to \Xi^{-}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}})V_{cs}^{*} \\ \Xi_{c}^{+} \to \Lambda^{0}\ell^{+}\nu_{\ell} & -\frac{(a_{1}^{\lambda,\lambda_{W}} + 2a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}})V_{cs}^{*}}{\sqrt{6}} & \Xi_{c}^{0} \to \Xi^{-}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}})V_{cs}^{*} \\ \Xi_{c}^{+} \to \Lambda^{0}\ell^{+}\nu_{\ell} & -\frac{(a_{1}^{\lambda,\lambda_{W}} + 2a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}})V_{cs}^{*}} & \Xi^{0}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}})V_{cs}^{*} \\ \Xi_{c}^{+} \to \Lambda^{0}\ell^{+}\nu_{\ell} & -\frac{(a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,$$

global fit

Helicity amplitude:

$$\begin{split} a_{1}^{\lambda,\lambda_{w}} + a_{5}^{\lambda,\lambda_{w}} &= f_{1}(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}) - f_{1}'(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}\gamma_{5}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}), \\ a_{2}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} &= \delta f_{1}(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}) - \delta f_{1}'(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}\gamma_{5}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}), \\ a_{3}^{\lambda,\lambda_{w}} &= \Delta f_{1}(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}) - \Delta f_{1}'(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}\gamma_{5}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w}), \end{split}$$

$f_i(q^2) = \frac{f_i}{1 - \frac{1}{q^2}}$	$\frac{\overline{q^2}}{m_p^2}$,	$f_i(q^2)$	$= f_i$
Pole mode	1	Cor	istant
	Experimental data	Fit data (pole model)	Fit data (constant)
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	3.6 ± 0.4	3.61 ± 0.32	3.62 ± 0.32
$\Lambda_c^+ ightarrow \Lambda^0 \mu^+ u_\mu$	3.5 ± 0.5	3.48 ± 0.30	3.45 ± 0.30
$\Xi_c^+ o \Xi^0 e^+ \nu_e$	2.3 ± 1.5	3.89 ± 0.73	3.92 ± 0.73
$\Xi_c^0 o \Xi^- e^+ u_e$	1.54 ± 0.35	1.29 ± 0.24	1.31 ± 0.24
$\Xi_c^0 o \Xi^- \mu^+ u_\mu$	1.27 ± 0.44	1.24 ± 0.23	1.24 ± 0.23
Fit parameter	$f_1 = 1.01 \pm 0.87$,	$\delta f_1 = -0.51 \pm 0.92$	$x^2/do f = 16$
(Pole model)	$f_1' = 0.60 \pm 0.49$,	$\delta f_1' = -0.23 \pm 0.41$	$\chi / u.o.j = 1.0$
Fit parameter	$f_1 = 0.86 \pm 0.92$,	$\delta f_1 = -0.25 \pm 0.88$	$x^2/do f = 10$
(Constant)	$f_1' = 0.85 \pm 0.36$,	$\delta f_1' = -0.43 \pm 0.50$	χ /u.o.j = 1.9

The differential branching ratio with two different treatments of form factors

 $\Xi_c^{\prime 0/+}$ mixing effect

Amplitude of sextet semi-leptonic decays:

$$H_{\lambda,\lambda_{W}} = c_{1}^{\lambda,\lambda_{W}} \times (T_{c6})^{\{ij\}} (H_{3})^{k} \epsilon_{ikm} (T_{8})_{j}^{m} + c_{2}^{\lambda,\lambda_{W}} \times (T_{c6})^{\{in\}} (H_{3})^{k} \epsilon_{ikm} (T_{8})_{j}^{m} \omega_{n}^{j} + c_{3}^{\lambda,\lambda_{W}} \times (T_{c6})^{\{in\}} (H_{3})^{k} \epsilon_{kjm} (T_{8})_{i}^{m} \omega_{n}^{j} + c_{4}^{\lambda,\lambda_{W}} \times (T_{c6})^{\{in\}} (H_{3})^{k} \epsilon_{jim} (T_{8})_{k}^{m} \omega_{n}^{j} + c_{5}^{\lambda,\lambda_{W}} \times (T_{c6})^{\{ij\}} (H_{3})^{k} \epsilon_{inm} (T_{8})_{j}^{m} \omega_{k}^{n}.$$

Amplitude after sextex and anti-triplet mixing:

 $\Xi_c^{0mass} \to \Xi^- \ell^+ \nu_\ell$

$$H_{\lambda,\lambda_w}^{mass} \propto V_{cs}^* (a_1^{\lambda,\lambda_w} + a_2^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} + a_5^{\lambda,\lambda_w} + \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta),$$

SU(3) amplitude

$$\begin{split} \Lambda_{c}^{+} &\to \Lambda^{0} l^{+} \nu & -\sqrt{\frac{2}{3}} (a_{1}^{\lambda,\lambda_{w}} + a_{5}^{\lambda,\lambda_{w}}) V_{cs}^{*} \\ \Lambda_{c}^{+} &\to n l^{+} \nu & a_{1} V_{cd}^{*} \\ \Xi_{c}^{+} &\to \Sigma^{0} \ell^{+} \nu_{\ell} & \frac{(a_{1}^{\lambda,\lambda_{w}} + a_{3}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} - \frac{c_{1}^{\lambda,\lambda_{w}}}{\sqrt{2}} \theta) V_{cd}^{*}}{\sqrt{2}} \\ \Xi_{c}^{+} &\to \Lambda^{0} \ell^{+} \nu_{\ell} & -\frac{(a_{1}^{\lambda,\lambda_{w}} + 2a_{2}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} + \frac{3c_{1}^{\lambda,\lambda_{w}}}{\sqrt{2}} \theta) V_{cd}^{*}}{\sqrt{6}} \\ \Xi_{c}^{+} &\to \Xi^{0} \ell^{+} \nu_{\ell} & -(a_{1}^{\lambda,\lambda_{w}} + a_{2}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} + a_{5}^{\lambda,\lambda_{w}} + \frac{c_{1}^{\lambda,\lambda_{w}}}{\sqrt{2}} \theta) V_{cs}^{*} \\ \Xi_{c}^{0} &\to \Sigma^{-} \ell^{+} \nu_{\ell} & (a_{1}^{\lambda,\lambda_{w}} + a_{3}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} - \frac{c_{1}^{\lambda,\lambda_{w}}}{\sqrt{2}} \theta) V_{cd}^{*} \\ \Xi_{c}^{0} &\to \Xi^{-} \ell^{+} \nu_{\ell} & (a_{1}^{\lambda,\lambda_{w}} + a_{3}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} + a_{5}^{\lambda,\lambda_{w}} + \frac{c_{1}^{\lambda,\lambda_{w}}}{\sqrt{2}} \theta) V_{cs}^{*} \end{split}$$

$(z^{+} - \Xi_{c}^{\prime 0/+}$ mixing effect

Redefine the helicity amplitude:

 $a_4^{\lambda,\lambda_w} = a_4^{\lambda,\lambda_w} + c_1^{\lambda,\lambda_w} \theta / \sqrt{2}$

$$a_2^{\lambda,\lambda_w} = a_2^{\lambda,\lambda_w} + \sqrt{2}c_1^{\lambda,\lambda_w}\theta$$

Absorb the θ and c_1 into a_2 and a_4

	Experimental data	Fit data (pole model)	Fit data (constant).
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	3.6 ± 0.4	3.61 ± 0.32	3.62 ± 0.32
$\Lambda_c^+ \to \Lambda^0 \mu^+ \nu_\mu$	3.5 ± 0.5	3.48 ± 0.30	3.45 ± 0.30
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	2.3 ± 1.5	3.89 ± 0.73	3.92 ± 0.73
$\Xi_c^0 \to \Xi^- e^+ \nu_e$	1.54 ± 0.35	1.29 ± 0.24	1.31 ± 0.24
$\Xi_c^0 o \Xi^- \mu^+ u_\mu$	1.27 ± 0.44	1.24 ± 0.23	1.24 ± 0.23
Fit parameter	$f_1 = 1.01 \pm 0.87$,	$\delta f_1 = -0.51 \pm 0.92$	$x^2/do f = 16$
(Pole model)	$f_1' = 0.60 \pm 0.49$,	$\delta f_1' = -0.23 \pm 0.41$	$\chi / u.0.j = 1.0$
Fit parameter	$f_1 = 0.86 \pm 0.92$,	$\delta f_1 = -0.25 \pm 0.88$	$x^2/do f = 10$
(Constant)	$f_1' = 0.85 \pm 0.36$,	$\delta f_1' = -0.43 \pm 0.50$	$\chi / u.0.j = 1.5$

Δf_1 and $\Delta f'_1$ cannot be constrained due to the lack of experimental data,

SU(3) amplitude

$$\begin{split} \Lambda_{c}^{+} &\to \Lambda^{0}l^{+}\nu & -\sqrt{\frac{2}{3}}(a_{1}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}})V_{cs}^{*} \\ \Lambda_{c}^{+} &\to nl^{+}\nu & a_{1}V_{cd}^{*} \\ \Xi_{c}^{+} &\to \Sigma^{0}\ell^{+}\nu_{\ell} & \frac{(a_{1}^{\lambda,\lambda_{W}} + a_{3}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} - \frac{c_{1}^{\lambda,\lambda_{W}}}{\sqrt{2}}\theta)V_{cd}^{*}}{\sqrt{2}} \\ \Xi_{c}^{+} &\to \Lambda^{0}\ell^{+}\nu_{\ell} & -\frac{(a_{1}^{\lambda,\lambda_{W}} + 2a_{2}^{\lambda,\lambda_{W}} - a_{3}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + \frac{3c_{1}^{\lambda,\lambda_{W}}}{\sqrt{2}}\theta)V_{cd}^{*}}{\sqrt{6}} \\ \Xi_{c}^{+} &\to \Xi^{0}\ell^{+}\nu_{\ell} & -(a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}} + \frac{c_{1}^{\lambda,\lambda_{W}}}{\sqrt{2}}\theta)V_{cs}^{*} \\ \Xi_{c}^{0} &\to \Sigma^{-}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{3}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} - \frac{c_{1}^{\lambda,\lambda_{W}}}{\sqrt{2}}\theta)V_{cd}^{*} \\ \Xi_{c}^{0} &\to \Xi^{-}\ell^{+}\nu_{\ell} & (a_{1}^{\lambda,\lambda_{W}} + a_{2}^{\lambda,\lambda_{W}} - a_{4}^{\lambda,\lambda_{W}} + a_{5}^{\lambda,\lambda_{W}} + \frac{c_{1}^{\lambda,\lambda_{W}}}{\sqrt{2}}\theta)V_{cs}^{*} \end{split}$$

More data!

Prodiction

$$\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = (0.520 \pm 0.046)\%$$
$$\mathcal{B}(\Lambda_c^+ \to n\mu^+ \nu_\mu) = (0.506 \pm 0.045)\%$$

$$\begin{split} &\mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e) = (0.496 \pm 0.046)\%, \\ &\mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e) = (0.067 \pm 0.013)\%, \\ &\mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e) = (0.333 \pm 0.031)\%, \\ &\mathcal{B}(\Xi_c^+ \to \Sigma^0 \mu^+ \nu_\mu) = (0.481 \pm 0.044)\%, \\ &\mathcal{B}(\Xi_c^+ \to \Lambda^0 \mu^+ \nu_\mu) = (0.069 \pm 0.0213)\%, \\ &\mathcal{B}(\Xi_c^0 \to \Sigma^- \mu^+ \nu_\mu) = (0.323 \pm 0.029)\%. \end{split}$$

Scenarios

Assuming a_5 has no contributions

Assuming *a*₂ *a*₃ and *a*₅ has no contributions

PART 03

• SU(3) symmetry in non-leptonic charm baryon decays

TSUNG-DAO LEE INSTITUTE

The non-leptonic charm baryon two body decays

Belle collaboration

BESIII collaboration

2021:

 $\mathcal{B}(\Xi_c^0 \to \Lambda K_S^0) = (4.12 \pm 0.14 \pm 0.21 \pm 1.19) \times 10^{-3},$ $\mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S^0) = (0.69 \pm 0.10 \pm 0.08 \pm 0.20) \times 10^{-3},$ $\mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-) = (2.21 \pm 0.13 \pm 0.19 \pm 0.64) \times 10^{-3}.$

2022:

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to p\eta') &= (4.73 \pm 0.82 \pm 0.47 \pm 0.24) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+) &= (6.57 \pm 0.17 \pm 0.11 \pm 0.35) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) &= (3.58 \pm 0.19 \pm 0.06 \pm 0.19) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta) &= (3.14 \pm 0.35 \pm 0.11 \pm 0.25) \times 10^{-3}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta') &= (4.16 \pm 0.75 \pm 0.21 \pm 0.33) \times 10^{-3}, \end{split}$$

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to n\pi^+) &= (6.6 \pm 1.2 \pm 0.4) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to p\eta') &= (5.62^{+2.46}_{-2.04} \pm 0.26) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+) &= (6.21 \pm 0.44 \pm 0.26 \pm 0.34) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0) &= (4.8 \pm 1.4 \pm 0.2 \pm 0.3) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) &= (4.7 \pm 0.9 \pm 0.1 \pm 0.3) \times 10^{-4}. \end{split}$$

The non-leptonic charm baryon two body decays have received a lot of experimental attention

< 22

The non-leptonic charm baryon two body decays

Hadron states:

$$T_{c\bar{3}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}, \quad T_8 = \begin{pmatrix} \frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\ \Sigma^- & -\frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}, \quad P = \begin{pmatrix} \frac{\pi^0 + \eta_q}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\pi^0 + \eta_q}{\sqrt{2}} & K^0 \\ \pi^- & \overline{K}^0 & \eta_s \end{pmatrix}$$

 $\begin{aligned} \textbf{Hamiltonian:} \quad \mathcal{H}_{eff} &= \sum_{i=1,2} \frac{G_F}{\sqrt{2}} C_i (V_{cs} V_{ud}^* O_i^{s\bar{d}u} + V_{cq} V_{uq}^* O_i^{q\bar{q}u} + V_{cd} V_{us}^* O_i^{d\bar{s}u}) + \text{h.c.}, \quad q = s, d, \\ O_1^{q_1\bar{q}_2q_3} &= (\bar{q}_{1\alpha}c_{\beta})_{V-A} (\bar{q}_{3\beta}q_{2\alpha})_{V-A}, \quad O_2^{q_1\bar{q}_2q_3} &= (\bar{q}_{1\alpha}c_{\alpha})_{V-A} (\bar{q}_{3\beta}q_{2\beta})_{V-A}. \\ \textbf{I} &= \underbrace{\mathbf{I}_{i=1,2} \mathbf{I}_{i} \mathbf{I}_{$

The SU(3) anal	ysis	Experiment data(%)	
$\Gamma(\Lambda^+ \to \Sigma^0 \pi^+) = \Gamma(\Lambda^+ \to \Sigma^+ \pi^0)$	$\Lambda_c^+ \to \Sigma^0 \pi^+$	1.29 ± 0.07	
	$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.25 ± 0.10	
$\Gamma(\Xi^0 \setminus \Xi^- K^+) = \sin^2 \rho \Gamma(\Xi^0 \setminus \Xi^- \pi^+) $	$\Xi_c^0 \to \Xi^- \pi^+$	1.43 ± 0.32	
$\Gamma(\underline{\neg}_c \to \underline{\neg} \ \Lambda \) = \operatorname{SIII} \ O\Gamma(\underline{\neg}_c \to \underline{\neg} \ \Lambda \) \qquad \qquad$		0.039 ± 0.012	
prediction: $\mathcal{B}(\Xi_c^0 \to \Xi^- K^+) = (7.3 \pm 1.6) \times 10^-$		3σ standard deviation	
We need further analysis			

SU(3) analysis

Helicity amplitude:

 $q_{6} = G_{F}\bar{u}(f_{6}^{q} - g_{6}^{q}\gamma_{5})u, \qquad q = a, b, c, d,$ $q_{15} = G_{F}\bar{u}(f_{15}^{q} - g_{15}^{q}\gamma_{5})u, \qquad q = a, b, c, d, e,$

Observations:

$$\frac{d\Gamma}{d\cos\theta_M} = \frac{G_F^2 |\vec{p}_{B_n}| (E_{B_n} + M_{B_n})}{8\pi M_{B_c}} (|F|^2 + \kappa^2 |G|^2) (1 + \alpha \hat{\omega}_i \cdot \hat{p}_{B_n})$$
$$\alpha = 2\text{Re}(F * G)\kappa / (|F|^2 + \kappa^2 |G|^2), \kappa = |\tilde{p}_{B_n}| / (E_{B_n} + M_{B_n}).$$

$$\kappa^2 = \frac{(M_{B_c} - M_{B_n})^2 - M_M^2}{(M_{B_c} + M_{B_n})^2 - M_M^2}$$

9 SU(3) amplitude and 18 form fators!

Depending on the specific processes, the F and G linear functions of f_i and g_i are the scalar and peseudoscalar form factors, respectively.

	Experime	ent data		SU(3) :	amplitude for
$\Lambda_c^+ \to p K_S^0$	1.59 ± 0.08	$\alpha(\Lambda_c^+ \to p K_S^0)$	0.18 ± 0.45		
$\Lambda_c^+ o p\eta$	0.124 ± 0.03	$\alpha(\Lambda_c^+ \to \Lambda \pi^+)$	-0.84 ± 0.09		bo allowed process
$\Lambda_c^+ \to \Lambda \pi^+$	1.3 ± 0.07	$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	-0.73 ± 0.18	_	
$\Lambda_c^+ \to \Sigma^0 \pi^+$	1.29 ± 0.07	$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.55 ± 0.11	$\Lambda^+ \to \Sigma^0 \pi^+$	$(-b_6 + b_{15} + c_6 - c_{15} + d_6)/\sqrt{2}$
$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.25 ± 0.10	$\alpha(\Xi_c^0 \to \Xi^- \pi^+)$	-0.6 ± 0.4	$- \qquad \qquad$	$\frac{-(b_6 - b_{15} + c_6 - c_{15} + d_6 + 2e_{15})/\sqrt{6}}{-(b_6 - b_{15} + c_6 - c_{15} + d_6 + 2e_{15})/\sqrt{6}}$
$\Lambda^+ \rightarrow \Xi^0 K^+$	0.55 ± 0.07	_		$\Lambda_c^+ \to \Sigma^+ \pi^0$	$(b_6 - b_{15} - c_6 + c_{15} - d_6)/\sqrt{2}$
$\frac{\Lambda^+ \to \Lambda K^+}{K^+}$	0.061 ± 0.012			$\Lambda_c^+ \to p K_S^0$	$(\sin^2\theta (-d_6 + d_{15} + e_{15}) + b_6 - b_{15} - e_{15})/\sqrt{2}$
$n_c \rightarrow n_R$	0.001 ± 0.012			$\Lambda_c^+ o \Xi^0 K^+$	$-c_6 + c_{15} + d_{15}$
$\Lambda_c^+ \to \Sigma^+ \eta$	0.44 ± 0.20	_		$\Xi_c^+\to \Sigma^+ K^0_S$	$(\sin^2\theta (b_6 - b_{15} - e_{15}) - d_6 + d_{15} + e_{15})/\sqrt{2}$
$\Lambda_c^+ \to \Sigma^+ \eta'$	1.5 ± 0.60			$\Xi_c^+ \to \Xi^0 \pi^+$	$-d_6 - d_{15} - e_{15}$
$\Lambda^+_{*} \rightarrow \Sigma^0 K^+$	0.052 ± 0.008			$\Xi_c^0 \to \Sigma^0 K_S^0$	$(-\sin^2\theta (b_6 + b_{15} - e_{15}) + (c_6 + c_{15} + d_6 - e_{15})),$
$\Xi_c^+ \to \Xi^0 \pi^+$	1.6 ± 0.8	-		$\Xi_c^0\to\Lambda K_S^0$	$\sqrt{3}\sin^2\theta \left(b_6 + b_{15} - 2c_6 - 2c_{15} - 2d_6 + e_{15}\right)/6$ $+\sqrt{3}(2b_6 + 2b_{15} - c_6 - c_{15} - d_6 - e_{15})/6$
$\Xi_c^0 \to \Lambda K_S^0$	0.334 ± 0.067	5		$\Xi_c^0 \to \Sigma^+ K^-$	$c_6 + c_{15} + d_{15}$
$\Xi_c^0 \rightarrow \Xi^- \pi^+$	1.43 ± 0.32	-		$\Xi_c^0 \to \Xi^- \pi^+$	$b_6 + b_{15} + e_{15}$
$\Xi_c^0 \to \Xi^- K^+$	0.039 ± 0.012	21 experi	mental data	$\Xi_c^0 o \Xi^0 \pi^0$	$(-b_6 - b_{15} + d_6 + d_{15})/\sqrt{2}$
$\Xi_c^0 \to \Sigma^0 K_S^0$	0.069 ± 0.024	H			
$\Xi_c^0\to \Sigma^+ K^-$	0.221 ± 0.068	-			
2					

Globel fit

paramotors	Our work		
parameters	scalar (f)	pseudoscalar (g)	
b_6	-0.111 ± 0.0093	0.142 ± 0.026	
c_6	-0.010 ± 0.018	-0.106 ± 0.078	
d_6	-0.042 ± 0.015	0.02 ± 0.12	
b_{15}	0.0448 ± 0.0091	-0.021 ± 0.019	
c_{15}	0.063 ± 0.018	0.140 ± 0.052	
d_{15}	-0.018 ± 0.014	-0.11 ± 0.12	
e_{15}	0.0382 ± 0.0044	0.185 ± 0.024	
a	0.121 ± 0.064	0.22 ± 0.77	
a'			
χ^2 /d.o.f.	0.744		

There are not enough data to determine the amplitude a_6 and a_{15} . We define the new amplitude:

$$a = a_6 - a_{15}, \quad a' = a_6 + a_{15}.$$

and form factors:

$$f^{a} = f^{a}_{6} - f^{a}_{15}, \quad f^{a\prime} = f^{a}_{6} + f^{a}_{15},$$
$$g^{a} = g^{a}_{6} - g^{a}_{15}, \quad g^{a\prime} = g^{a}_{6} + g^{a}_{15},$$

No SU(3) symmetry breaking!

channol		111
channer	Experimental data (10^{-2})	Our work (10^{-2})
$\Lambda_c^+ \to p K_S^0$	$\Lambda_c^+ \to p K_S^0 \qquad 1.59 \pm 0.08$	
$\Lambda_c^+ o p\eta$	0.124 ± 0.03	0.127 ± 0.024
$\Lambda_c^+ \to \Lambda \pi^+$	1.3 ± 0.07	1.307 ± 0.069
$\Lambda_c^+ o \Sigma^0 \pi^+$	1.29 ± 0.07	1.272 ± 0.056
$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.25 ± 0.10	1.283 ± 0.057
$\Lambda_c^+ ightarrow \Xi^0 K^+$	0.55 ± 0.07	0.548 ± 0.068
$\Lambda_c^+ \to \Lambda K^+$	0.061 ± 0.012	0.064 ± 0.010
$\Lambda_c^+ \to \Sigma^+ \eta$	0.44 ± 0.20	0.45 ± 0.19
$\Lambda_c^+ o \Sigma^+ \eta'$	1.5 ± 0.60	1.5 ± 0.60
$\Lambda_c^+ \to \Sigma^0 K^+$	0.052 ± 0.008	0.0504 ± 0.0056
$\Xi_c^+ \to \Xi^0 \pi^+$	1.6 ± 0.8	0.54 ± 0.18
$\Xi_c^0 ightarrow \Lambda K_S^0$	0.334 ± 0.067	0.334 ± 0.065
$\Xi_c^0 \to \Xi^- \pi^+$	1.43 ± 0.32	1.21 ± 0.21
$\Xi_c^0\to \Xi^- K^+$	0.039 ± 0.012	0.047 ± 0.0083
$\Xi_c^0 \to \Sigma^0 K_S^0$	0.069 ± 0.024	0.069 ± 0.024
$\Xi_c^0\to \Sigma^+ K^-$	0.221 ± 0.068	0.221 ± 0.068
channel		-
channer	Experimental data	Our work
$\alpha(\Lambda_c^+ \to p K_S^0)$	0.18 ± 0.45	0.19 ± 0.41
$\alpha(\Lambda_c^+ \to \Lambda \pi^+)$	-0.84 ± 0.09	-0.841 ± 0.083
$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	-0.73 ± 0.18	-0.605 ± 0.088
$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.55 ± 0.11	-0.603 ± 0.088
$\alpha(\Xi_c^0\to\Xi^-\pi^+)$	-0.6 ± 0.4	-0.56 ± 0.32
$\chi^2/d.o.f.$		0.744

Globel fit

Prediction for Cabibbo allowed process

channel	SU(3) amplitude	branching ratio (10^{-2})	α
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$(-b_6 + b_{15} + c_6 - c_{15} + d_6)/\sqrt{2}$	1.272 ± 0.056	-0.605 ± 0.088
$\Lambda_c^+\to\Lambda\pi^+$	$-(b_6 - b_{15} + c_6 - c_{15} + d_6 + 2e_{15})/\sqrt{6}$	1.307 ± 0.069	-0.841 ± 0.083
$\Lambda_c^+\to \Sigma^+\pi^0$	$(b_6 - b_{15} - c_6 + c_{15} - d_6)/\sqrt{2}$	1.283 ± 0.057	-0.603 ± 0.088
$\Lambda_c^+ o p K_S^0$	$(\sin^2\theta (-d_6 + d_{15} + e_{15}) + b_6 - b_{15} - e_{15})/\sqrt{2}$	1.587 ± 0.077	0.19 ± 0.41
$\Lambda_c^+\to \Xi^0 K^+$	$-c_6 + c_{15} + d_{15}$	0.548 ± 0.068	0.866 ± 0.090
$\Xi_c^+\to \Sigma^+ K^0_S$	$(\sin^2\theta (b_6 - b_{15} - e_{15}) - d_6 + d_{15} + e_{15})/\sqrt{2}$	0.53 ± 0.70	0.6 ± 2.2
$\Xi_c^+\to \Xi^0\pi^+$	$-d_6 - d_{15} - e_{15}$	0.54 ± 0.18	-0.94 ± 0.15
$\Xi_c^0 ightarrow \Sigma^0 K_S^0$	$(-\sin^2\theta (b_6 + b_{15} - e_{15}) + (c_6 + c_{15} + d_6 - e_{15}))/2$	0.069 ± 0.024	1.00 ± 0.13
$\Xi_c^0\to\Lambda K_S^0$	$\frac{\sqrt{3}\sin^2\theta \left(b_6 + b_{15} - 2c_6 - 2c_{15} - 2d_6 + e_{15}\right)/6}{+\sqrt{3}(2b_6 + 2b_{15} - c_6 - c_{15} - d_6 - e_{15})/6}$	0.334 ± 0.065	-0.04 ± 0.63
$\Xi_c^0\to \Sigma^+ K^-$	$c_6 + c_{15} + d_{15}$	0.221 ± 0.068	-0.9 ± 1.0
$\Xi_c^0\to \Xi^-\pi^+$	$b_6 + b_{15} + e_{15}$	1.21 ± 0.21	-0.56 ± 0.32
$\Xi_c^0\to \Xi^0\pi^0$	$(-b_6 - b_{15} + d_6 + d_{15})/\sqrt{2}$	0.256 ± 0.093	-0.23 ± 0.60
$\Lambda_c^+ \to \Sigma^0 K^+$	$\sin\theta \left(-b_6 + b_{15} + d_6 + d_{15}\right) / \sqrt{2}$	0.0504 ± 0.0056	-0.953 ± 0.040

PART 04

• Recent progress in the charm baryon decays

TSUNG-DAO LEE INSTITUTE

The new experiment data in 2022

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to n\pi^+) &= (6.6 \pm 1.2 \pm 0.4) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to p\eta') &= (5.62^{+2.46}_{-2.04} \pm 0.26) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+) &= (6.21 \pm 0.44 \pm 0.26 \pm 0.34) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0) &= (4.8 \pm 1.4 \pm 0.2 \pm 0.3) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) &= (4.7 \pm 0.9 \pm 0.1 \pm 0.3) \times 10^{-4}. \\ \end{split}$$

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+) &= (1.10 \pm 0.02 \pm 0.11 \pm 0.21) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) &= (3.58 \pm 0.17 \pm 0.11 \pm 0.35) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) &= (3.14 \pm 0.35 \pm 0.11 \pm 0.25) \times 10^{-3}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta') &= (4.16 \pm 0.75 \pm 0.21 \pm 0.33) \times 10^{-3}, \\ \alpha(\Lambda_c^+ \to \Lambda^0 K^+) &= -0.023 \pm 0.086 \pm 0.071, \\ \alpha(\Lambda_c^+ \to \Sigma^0 K^+) &= 0.08 \pm 0.35 \pm 0.14, \\ \alpha(\Lambda_c^+ \to \Sigma^+ \eta) &= -0.99 \pm 0.03 \pm 0.05, \\ \alpha(\Lambda_c^+ \to \Sigma^+ \eta') &= -0.46 \pm 0.06 \pm 0.03. \end{split}$$

BesIII Belle

Belle Collaboration

Recent progress in the charm baryon decays

The SU(3) symmetry breaking

$$\Xi_c^{0/+} - \Xi_c^{\prime 0/+}$$
 mixing angle

The SU(3) symmetry breaking in nonleptonic decays

> $A' = u_1(\mathbf{B}_c)_i H(\overline{3})^i (\mathbf{B}_n)_k^j (M)_j^k + u_2(\mathbf{B}_c)_i H(\overline{3})^j (\mathbf{B}_n)_k^i (M)_j^k$ $+ u_3(\mathbf{B}_c)_i H(\overline{3})^j (\mathbf{B}_n)_j^k (M)_k^i$

$$B' = A' \Big|_{u_i \to v_i}$$

arXiv:2210.07211 (Chao-Qiang Geng, Xiang-Nan Jin, Chia-Wei Liu)

arXiv:2211.12960

(Chia-Wei Liu, Chao-Qiang Geng)

(bag model)

arXiv:2210.12728

(Huiling Zhong, Fanrong Xu, Qiaoyi Wen, Yu Gu)

 0.221 ± 0.068

 $\Xi_c^0 \to \Sigma^+ K^-$

The SU(3) symmetry breaking

			100
1 1		$\alpha(\Lambda_c^+ \to pK_S^0)$	0.18 ± 0.45
channel	Experimental data (10^{-2})	$\alpha(\Lambda_c^+ \to \Lambda \pi^+)$	-0.775 ± 0.006
$\Lambda_c^+ \to p K_S^0$	1.59 ± 0.08	$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	-0.463 ± 0.018
$\Lambda_c^+ \to p\eta$	0.124 ± 0.03	$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.48 ± 0.028
$\Lambda_c^+ \to \Lambda \pi^+$	1.3 ± 0.07	$\alpha(\Xi_c^0\to\Xi^-\pi^+)$	-0.6 ± 0.4
$\Lambda_c^+ \to \Sigma^0 \pi^+$	3.61 ± 0.73	$\alpha(\Lambda_c^+ \to \Lambda K^+)$	-0.585 ± 0.052
$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.25 ± 0.10	$\alpha(\Lambda_c \to \Sigma^0 K^+)$	-0.55 ± 0.201
$\Lambda_c^+ \to \Xi^0 K^+$	0.55 ± 0.07	$\alpha(\Lambda_c \to \Sigma^+ \eta)$	-0.99 ± 0.0583
$\Lambda_c^+ \to \Lambda K^+$	0.0657 ± 0.0040	$\alpha(\Lambda_c \to \Sigma^+ \eta')$	-0.46 ± 0.07
$\Lambda_c^+ \to \Sigma^+ K_s^0$	0.048 ± 0.014		
$\Lambda_c^+ \to \Sigma^+ \eta$	0.314 ± 0.044		
$\Lambda_c^+ \to \Sigma^+ \eta'$	0.416 ± 0.085	2 /	
$\Lambda_c^+ \to \Sigma^0 K^+$	0.0358 ± 0.0028	χ^{-} / γ	a.o.f = 2.82
$\Xi_c^+ \to \Xi^0 \pi^+$	1.6 ± 0.8		
$\Xi_c^0 ightarrow \Lambda K_S^0$	0.334 ± 0.067		
$\Xi_c^0 \to \Xi^- \pi^+$	1.43 ± 0.32		
$\Xi_c^0 \to \Xi^- K^+$	0.039 ± 0.012		
$\Xi_c^0 \to \Sigma^0 K_S^0$	0.069 ± 0.024		

The experiment data in not enough for us to consider the SU(3) symmetry breaking effect in glabel fit.

Expecting more data!

PART 05

Conclusion and outlook

TSUNG-DAO LEE INSTITUTE

- There are an obvious evidence which show that the charm baryon semi-leptonic and non-leptonic two body decay processes have SU(3) symmetry breaking effect.
- The SU(3) symmetry breaking effect can be explained by the antitriplet and sextet charm baryon mixing effect.
- The charm baryon decay processes may be a new platform for search new physics.
- We eagerly waiting for data from future experimental facilities.

Thanks!

