

Observation and cross section measurements of electroweak W(->lv)γjj in pp collisions at √s = 13 TeV with the ATLAS detector

Xi Wang Shanghai Jiao Tong University CLHCP, Nov 24, 2022, Nanjing

Content

Introduction

- Analysis overview and strategy
- Selections
- Data-driven background estimation
- Observation Neural network fit
- Differential cross section measurement of EW Wγjj
 Summary

Introduction

- Vector Boson Scattering
 - Very rare process (~ fbs), precision test of SM

- $\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{\mathrm{n=5}}^{\infty} rac{\mathbf{f}_{\mathrm{n}}}{\Lambda^{\mathrm{n-4}}} \mathbb{O}_{\mathrm{n}}$
- To probe anomalous couplings between vector bosons, model independent search of BSM and set limits on EFT dimension-8 operators

VBS cross section measurement in ATLAS

Crucial to understand the Electroweak Symmetry Breaking

 \bigcirc VBS $W\gamma$ hasn't been observed at ATLAS.

CMS EW Wγjj

- \sim 1st observation, 35.9 fb⁻¹, cut based, 5.3 σ (combining 13 TeV and 8 TeV) <u>PLB 811 (2020) 135988</u>
- Differential cross section measurement, 138fb⁻¹, 6.03σ <u>CMS-PAS-SMP-21-011</u> Jing Peng's talk

Analysis overview

- Physics goal
 - Observe EW Wγjj
 - \bigcirc Measure a fiducial and differential cross section of EW production of Wyjj
 - Probe anomalous quartic gauge boson couplings in EFT
- Datasets
 - Full Run-2 datasets (139fb⁻¹)

$$\xi(x) = |\frac{y(x) - 0.5(y(j0) + y(j1))}{\Delta y(jj)}|$$

Analysis strategy

- Neural network is used to discriminate signal and background and fit the output.
- A control region is defined by reverse $\xi_{W\gamma}$ to constrain the QCD background.
- Data driven methods are used to estimate all non-prompt, fake, pileup backgrounds.
- $\bigcirc \Delta Y_{ii}$ cut-based fit is performed to check with NN results.
- The extracted yields are unfolded to produce differential cross sections.

Selections

Basic selection

Single lepton triggers, event cleaning, GRLs

Object selection

At least 1 tight & isolated γ	1 tight & isolated lepton	At least 2 jets
$pT_{\gamma} > 22GeV$	$pT_{lep} > 30GeV$	$pT_{j1} > 50GeV$
$\left \eta_{\gamma}\right < 2.37$	$\left \eta_{lep}\right < 2.5$	$pT_{j2} > 50GeV$

Event selection

$M_T^W > 30 GeV$	$\Delta R(\gamma, lep) > 0.4$	$\Delta \phi(j1(2), MET) > 0.4$
MET > 30GeV	$\Delta R(j1, j2) > 0.4$	$m_{jj} > 500 GeV$
$\left M_{Z}-M_{\gamma+lep}\right >10$	$\Delta R(\gamma, j1(2)) > 0.4$	Standard object OR

Additional selection

- NN fit: $\triangle Y_{jj} > 2$
- $\bigcirc \Delta Y_{jj} \text{ fit: } m_{jj} > 700 \text{GeV}$
- O Differential extraction: $\triangle Y_{ij} > 2, m_{ij} > 1 \text{TeV}$

XI WANG/SJTU

Typical VBS topology

 ✓ Two tagging jets Large rapidity gap △Y_{jj}
 ✓ Large Invariant mass m_{jj}
 ✓ Centrality - Little hadronic activity between the two jets

Data-driven background estimation

- Jet faking photons template fit method
 - A prompt photon template shape f_{T} A real photon leakage shape f_{NT}
 - 0 DSCB function is used as the pdf function.
 - The template parameters are floated but constrained by multivariate gaussians defined by the mean and sigma of the best fit values of the template fits.

 $-NLL = -log \prod f_T(x|\theta_T) f_{NT}(x|\theta_{NT}) G(\theta_T|\sigma_{\theta_T}) G(\theta_{NT}|\sigma_{\theta_{NT}})$

- Jet faking leptons(e/μ) fake factor method
 - Dijet events are used to estimate the fake factor
 - Tight leptons: pass signal selection Anti-Tight leptons: fail isolation or ridentification(e) d_0 requirement(μ)
 - $\bigcirc F = \frac{N_{"Tight \, \mu" + j}}{N_{"Anti-tight \, \mu" + j}} \quad \text{(Dijet events)}$

XI WANG/SJTV

 $\bigcirc N_{"Fake and Tight \mu" + \gamma jj} = F \times \left(N_{"Anti-tight \mu" + \gamma jj}^{Data} - N_{"Real and Anti-tight \mu" + \gamma jj}^{MC} \right)$

Muon fake factor in p_T and η

NN score

Jet faking muon distributions in m_{ii}

Data-driven background estimation

Electron faking photons – fake factor method

Tag and probe method -Z (->ee) + jets events

Tag electron	Probe electron	Probe photon	Other selections
$p_T > 30 GeV$	$p_T > 22 GeV$	$p_T > 22GeV$	$m_T^{W(ev)} < 20 GeV$
$ \eta < 2.5$	$ \eta < 2.37$	$ \eta < 2.37$	$E_T^{miss} < 20 GeV$
e_isoTightVarRad	e_isoTightVarRad	gam_isoTight	
e_idTight	e_idTight	gam_idTight	
$ z_0 \times sin\theta < 5mm$	$ z_0 \times sin\theta < 5mm$		
$ d_0/\sigma_{d_0} < 3$	$ d_0/\sigma_{d_0} < 3$		
pass single electron triggers	Opposite charge with tag electron		

Validated in the Z veto region with reversing MET and W_T^M cuts

 $F_{e \to \gamma} = \frac{\epsilon_{\gamma}}{\epsilon_e} = \frac{N_{e_{tag}\gamma_{probe}}^{reco}}{2N_{e_{tag}e_{tag}}^{reco} + N_{e_{tag}e_{probe}}^{reco}}$

Pileup background – Estimated with only converted photons <u>VBS Zy analysis</u>

For hard scatter photons, the $\Delta z(PV, \gamma)$ distribution should be sharply peaked at 0. For pileup photons, $\Delta z(PV, \gamma)$ is the difference of two uncorrelated gaussians with width of 35 mm (a gaussian of 35mm× 2 = 50mm) Using the Gaussian properties of the pile-up Δz distribution, 32% of pile-up events are ATLAS work-in-progress ATLAS work-in-prog

 $f_{pu} = 1.24 \pm .81\%$

(work-in-progress)

 $f_{PU} = \frac{N_{data}^{|\Delta z| > 50mm} - N_{MC}^{|\Delta z| > 50mm} * C}{N_{data} * 0.32}$

C is a normalization factor derived by comparing the QCD Wy and EW Wy to data.

This is only applied after data is unblinded!

 $\Delta z(y, PV)$ [m

ATLAS VBS WV

XI WANG/SJTU

Fake factor

Observation - Neural Network fit

Simultaneously fit the NN output in signal region and control region. Expected significance is extracted on Asimov data.

Signal strength and QCD normalization after fit to Asimov data

Expected significance: 12.3 σ (work-in-progress)

XI WANG/SJTV

ATLAS work-in-progress Parameter Value $1.01^{+0.16}$ μ_{EW} $0.79^{0.}$

 μ_{QCD}

Observation - Neural Network fit

- The relative impact of each nuisance parameter is evaluated by performing the fit for each nuisance parameter with that nuisance parameter fixed and comparing the result to the nominal fit.
 Post-fit impact on #:
 Post-fit impact on
- Dominated by theory uncertainties
- The fiducial cross section is calculated as

$$\sigma^{fid} = \frac{N^{sig}}{C\mathcal{L}} \qquad C = \frac{N^{reco}}{N^{fid}}$$

 N^{Sig} is the number of fitted events in data, \mathcal{L} is the integrated luminosity of the dataset *C* is a correction factor to account for the imperfect reconstruction efficiency of the detector.

Reco	Truth
TST MET	MET from non interacting truth particles
Object overlap removal	Reduced Object overlap removal
$lso_{\gamma} < 2.45 + 0.022 pT_{\gamma}$	$lso_{\gamma} < 6.43 + 0.022 pT_{\gamma}$

	Post-fit impact on μ : $\theta = \hat{\theta} + \Lambda \hat{\theta}$ $\theta = \hat{\theta} - \Lambda \hat{\theta}$	ATLAS work-in-progress	ATLAS work-in-progress		
	- Nuis. Param. Pull	√s = 13 TeV, 139 fb ⁻¹	Uncertainty Source	$+\Delta\mu$	$-\Delta\mu$
	Signal_scale		Theory	0.150	-0.15
	QCD sherpa - mg syst CR		Jets	0.059	-0.05
	JET_Flavor_Composition		Stat.	0.038	-0.03
	Signal_PDF		Luminosity	0.012	-0.01
	JET_Plavor_Response		Pileup Reweighting	0.017	-0.01
	ET_EtaIntercalibration_Modelling		NormFactors	0.014	-0.01
	PRW_DATASF		Photons	0.014	0.01
	QCDWySF		Fliotolis	0.015	-0.01
	JET_JER_DataVsMC_MC16		Flavor Tagging	0.008	-0.00
	JET_Pileup_OffsetMu		Muon	0.007	-0.00
t	PH_EFF_ISO_Uncertainty		Ifakemu	0.004	-0.00
	JET_JER_EffectiveNP_3		Missing E	0.004	0.00
or.	PH_EFF_ID_Uncertainty		Missing E_T	0.004	-0.00
	JET_JER_EffectiveNP_2		Jet fake photon	0.004	-0.00
	QCD_Sh2211_muR		Electron	0.004	-0.00
	JET_Pileup_OffsetNPV		Ecommo	0.003	0.00
	JET_JER_EffectiveNP_1		Egainina	0.005	-0.00
	ET_JER_EffectiveNP_7restTerm		Jet fake elctron	0.035	-0.00
	FT_EFF_Eigen_Light_0		Electron fake photon	0.001	-0.00
		-2 -1.5 -1 -0.5 0 0.5 1 1.5 2	Total	0.16	0.16
		$(\theta - \theta_0) / \Delta \theta$			

 $\sigma_{exp}^{fid} = 9.603 \pm 1.796(\pm 0.894(stat) \pm 0.714(sys.) \pm 1.343(th.) \pm 0.336(fakes))$ fb (work-in-progress)

XI WANG/SJTU

Differential cross section measurement of EW Wyjj

- Differential cross sections are measured as a function of m_{jj} , p_{Tjj} , and $\Delta \emptyset_{ii}^{signed}$.
- A binned maximum likelihood fit in SR + 1CR or 3CRs.
- The likelihood function is defined as (with indices r, *i* running over regions and bins respectively) v_{ri} is the total MC estimate given by N_{ri}^{gap} : Number of identified as (with indices r, *i* running over regions and bins respectively)

$$L = \prod_{r,i} \text{Pois}(N_{ri}^{\text{data}} | \gamma_{ri} \nu_{ri}(\alpha)) \text{Pois}\left(\left(\frac{\nu_{ri}(1)}{\delta_{ri}} \right)^2 | \gamma_{ri} \left(\frac{\nu_{ri}(1)}{\delta_{ri}} \right)^2 \right)$$

XI WANG/SJTV

$$v_{ri} \text{ is the total MC estimate given by}$$

$$v_{ri} = \mu_i v_{ri}^{\text{EW,MC}} + v_{ri}^{\text{strong}} + v_{ri}^{\text{non-W}\gamma,\text{MC}}$$

$$\alpha \equiv (\mu_1, \dots, \mu_n, b_{L,1}, \dots, b_{L,n}, b_{H,1}, \dots, b_{H,n}, f(x_i))$$

 N_{iets}^{gap} : Number of jets in rapidity gap Δy

 ≥ 1

= 0

CRa

SR

0.35

CRb

CRc

 ξ_{Wv}

Extraction of differential event yields and Iterative Bayesian unfolding method

16

Summary

- The current progress of EW production of Wγjj with full run2 data are presented.
- The MC samples, phase space, event selection and background are studied in detail.
- The expected significance of EW production of Wyjj can be obtained by fitting NN output. A cross check with ΔY_{ii} fit is also performed.
- The fiducial and differential cross sections are measured.
- AQGC study with EFT dimension-8 operators is performed in parallel.

any questions

- Contraction of the second

the second second second second

ATLAS VBS WY

XI WANG/SJTU

Triggers

Single lepton triggers

• Electron

- HLT_e24_lhmedium_L1EM20VH
- HLT_e60_lhmedium
- HLT_e120_lhloose
- HLT_e26_lhtight_nod0_ivarloose
- HLT_e60_lhmedium_nod0
- HLT_e140_lhloose_nod0

• Muon

- HLT_mu20_iloose_L1MU15
- HLT_mu26_ivarmedium
- HLT_mu50

MC samples

release 21.2, STDM4

signal	Process	Generator	ME Accuracy	PDF	Shower & Hadronization	Parameter Tune
nominal OCD	EW Wyjj	Madgraph5	LO	NNPDF3.1 LO	Pythia8+EvtGen	A14
nominal QCD	QCD Wyjj	Sherpa 2.2.11	NLO	NNPDF3.0 NLO	Sherpa	default
sample		Madgraph5	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
generator choice	EW Zyjj	Madgraph5	LO	NNPDF3.1 LO	Pythia8+EvtGen	A14
systematic	QCD Zyjj	Sherpa 2.2.11	NLO	NNPDF3.0 NLO	Sherpa	default
systematic	tīγ	Madgraph5	LO	NNPDF2.3 LO	Pythia8+EvtGen	A14
	tWγ	Madgraph5	LO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
jets faking photon	$tq\gamma$	Madgraph5	LO	NNPDF3.0 NLO	Herwig7+EvtGen	Default
	Single Top	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
	W+jets	Sherpa 2.2.11	NLO	NNFDF3.0 NNLO	Sherpa	Default
	Z+jcts	Sherpa 2.2.11	NLO	NNPDF3.0 NNLO	Sherpa	Default
the second se	Diboson	Sherpa 2.2.2	NLO	NNPDF 3.0 NNLO	Sherpa	Default
Jets taking lepton	Dijet	Pythia8	LO	NNPDF2.3 LO	Pythia8+EvtGen	A14
	EW Wjj	Sherpa 2.2.1	NLO	NNPDF3.0 NNLO	Sherpa	default
	EW Zjj	Sherpa 2.2.1	NLO	NNPDF3.0 NNLO	Sherpa	default
	tĪ	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
	tW	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14

Neural network training

16

Input variables used in NN training(ordered by importance)

-1.00

- 0.75

- 0.50

- 0.25

- 0.00

XI WANG/SJTU

Bkg Rejection

Observation - ΔY_{ii} fit

)7

- Fit ΔY_{ij} simultaneously in signal and control regions.
- Sideband CRs are used to constrain QCD background \bigcirc Require $\xi_{l+\gamma} \le 0.5$
- Fit performed in electron and muon channels separately.
- All theory and experimental systematics included as described above.

 Ngap

ATLAS work-in-progress

XI WANG/SJTU

	μ -channel	e-channel
Expected (Asimov)	7.0σ	6.0σ

