

H→γγ fiducial and differential cross-section measurements with full Run₂ dataset at ATLAS

Fábio Lucio Alves (Nanjing University)
on behalf of the ATLAS Collaboration

The 8th China LHC Physics Workshop (CLHCP2022)
November 23-27, Nanjing, China

Introduction

- It's 10 years since the Higgs boson discovery (2012):
 - Measurements of its properties using full Run2 dataset (2015-2018) are in excellent agreement with the SM.
- Inclusive and Differential Fiducial Higgs measurements:
 - Test the SM Higgs boson properties and probe for BSM contributions:
 - measured differential cross-sections distributions are compared to state-of-the-art SM predictions
 - Less model-dependent measurements: small extrapolations and SM assumptions
 - H $\rightarrow \gamma \gamma$ channel measurements <u>JHEP08(2022)027</u>:
 - No separation of production modes is aimed
 - Observables sensitive to New Physics, contributions of different Higgs boson production modes, CP-properties and QCD effects
 - Cross-sections measured are used in the interpretation via EFT theory and setting limits on Yukawa bottom- and charm-quarks using di-photon pT shape information

July 2012

July 2022

H→yy analysis in a nutshell

- Signature: two reconstructed isolated photons
 - ▶ diphoton vertex: NN algorithm, improves mass resolution
 - **▶** kinematic selections:
 - ▶ $pT(\gamma_1) > 0.35m_{\gamma\gamma}$; $pT(\gamma_2) > 0.25m_{\gamma\gamma}$
 - $\mid \eta \mid < 2.37 \text{ (exclude 1.37-1.52 region)}$
 - ▶ Jets: pT > 30 GeV, lyl < 4.4
 - ▶ $105 \ GeV < m_{\gamma\gamma} < 160 \ GeV$
 - **▶** Signal Modelling:
 - ▶ double-sided Crystal Ball function: MC simulation
- Background sources and modelling:
 - ▶ SM $\gamma\gamma$ production (irreducible) and γ jet and jet jet (reducible ones):
 - ▶ built background-only templates, GPR approach to smooth statistical fluctuations in low-yields templates
 - choice of the background model: signal+background fits to $m_{\gamma\gamma}$ background-only templates:
 - ▶ function's choice uncertainty ('spurious signal')

Fits to $m_{\gamma\gamma}$ to extract the signal yields

Measurement methodology

- ▶ Fiducial region: defined to closely match the detector-level analysis and object selections
- ▶ *Differential fiducial cross-section* are measured in bins of the studied observable (bin i of a variable x)
 - $\sqrt{N_i^{sig}}$ (measured signal yield): extracted signal events in data
 - $\sqrt{\Delta x}$ (bin width): choice based on significance (close to or greater than 2σ) and minimize migrations
 - $\checkmark c_i$ (correction factor): accounts for detector inefficiencies and resolutions effects as well as migrations in and out of fiducial region
 - ▶ MC response matrix

Differential fiducial cross-section

Fiducial cross-section measurement

Fiducial cross-sections measurements in regions enriched in various production modes

Diphoton fiducial region

Source	Uncertainty [%]				
Statistical uncertainty	7.5				
Systematic uncertainties	6.4				
Background modelling (spurious signal)	3.8				
Photon energy scale & resolution	3.6				
Photon selection efficiency	2.6				
Luminosity	1.8				
Pile-up modelling	1.4				
Trigger efficiency	1.0				
Theoretical modelling	0.4				
Total	9.8				

Diphoton fiducial cross-section = $67 \pm 5(stat.) \pm 4(sys.) fb$ SM = $64 \pm 4 fb$

- ▶ Measurement is statistical dominated
- ▶ Background modelling is the largest systematic uncertainty

default MC: Powheg
NNLOPS, normalized to N3LO
(QCD)+NLO(EW)

- Low $p_T^{\gamma\gamma}$: sensitive to bottom- and charm-quark Yukawa couplings
- ▶ **High** $p_T^{\gamma\gamma}$: top quark coupling and BSM effects

pT(H) > 350 GeV: sensitivity to BSM effects

 $|y_{\gamma\gamma}|$ is sensitive to light-quark Yukawa coupling and gluon distribution in the proton

Good agreement with the SM predictions whithin the uncertainties

Cross-section vs N_{jets} and N_{b-jets}

- Inclusive N_{iets} (pT > 30 GeV and |y| < 4.4):
 - ▶ sensitive to different Higgs boson production modes and QCD modelling (ggF)
- \triangleright N_{b-iets} : at least 1 central jet and veto on electrons/muons (suppress ttH contribution)
 - ▶ sensitive to Higgs production in association with heavy particles

Good agreement with the SM predictions

Jet-related systematic reaching up to 24% in highest jet multiplicities

 N_{b-jets} $p(\chi^2) = 60\%$ (default)

Differential cross-section vs p_T^{j1} , m_{jj} and $\Delta\phi_{jj}$

- p_T^{j1} : same range as $p_T^{\gamma\gamma}$ but within coarser bins at low pT
 - ▶ $p(\chi^2) = 78\%$ (default MC)
- $d\sigma_{fid}/dp_T^{j1}$ [fb/GeV] $=gg\rightarrow H$ default MC + XH ATLAS $H \rightarrow \gamma \gamma$, $\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹ $gg \rightarrow H \text{ SCETlib::pTj1} + XH$ → Data, tot. unc. Syst. unc. *gg→H* RadISH+NNLOJET + *XH* $gg \rightarrow H$ Sherpa+MCFM+OpenLoops + XHgg→H ResBos2 + XH XH = VBF + VH + ttH + bbH + tH 10^{-2} 10^{-4} Ratio to data 350 13000 $p_{\scriptscriptstyle extsf{T}}^{\text{j1}}$ [GeV]
- ▶ m_{jj} : highest bin is most sensitive to the VBF production mechanism
 - $p(\chi^2) = 79\%$ (default MC)

- $\Delta \phi_{jj}$: sensitive to CP properties of the Higgs boson
 - ▶ $p(\chi^2) = 91\%$ (default MC)

Good agreement with the SM predictions whithin the uncertainties

Double Differential cross-section vs $p_T^{\gamma\gamma}$ vs $|y_{\gamma\gamma}|$ and $p_T^{\gamma\gamma}$ vs $\tau_{C,j1}$

▶ 2D observables provides further look into the Higgs boson properties and correlations between the observables

 $p_T^{\gamma\gamma} vs |y_{\gamma\gamma}|$ $p(\chi^2) = 75\%$ (default MC)

Good agreement with the SM predictions whithin the uncertainties

 $p_T^{\gamma\gamma} vs \tau_{C,j1}$ $p(\chi^2) = 39\% \text{ (default MC)}$

Interpretation using the pT spectrum information

shape only

shape+XS+BR

• $p_T^{\gamma\gamma}$ spectrum provides indirect measurement of the c- and b-quarks Yukawa couplings (κ_c and κ_b):
• shape-only and shape+normalization information are used for the fitting

- \bullet Limits on κ_c and κ_b are set from a profile likelihood method:
- Most sensitive region of $p_T^{\gamma\gamma}$ spectrum < 200 GeV
- Stronger constraints from shape+normalization
- Shape+normalization constrain on κ_b is comparable to direct searches while κ_c provides stronger constraints (a factor of 3 more stringent for the observed result and a factor of 4 for the expected result)

Fit set-up	К	Observed 95% CL	Expected 95% CL
Shape-only		[-13.0, 18.9] [-3.7, 10.4]	[-10.1, 17.3] [-2.6, 8.1]
Shape+normalisation (with branching ratio variations)		[-2.7, 2.6] $[-1.2, -0.8] \cup [0.8, 1.1]$	[-3.1, 3.2] $[-1.2, -0.9] \cup [0.8, 1.2]$

Direct search limits on κ_c @ 95%CL:

observed: $|\kappa_c| < 8.5$

expected: $|\kappa_c| < 12.4$

ATLAS and CMS Run2 brief comparisons

- Comparison between the two analysis (diphoton fiducial region):
 - ▶ ATLAS/CMS unfolding: matrix response
 - ▶ S+B unbinned fit to $m_{\gamma\gamma}$ (ATLAS); S+B binned fit to $m_{\gamma\gamma}$ (CMS)
 - ▶ Signal Model: Double Sided Crystall Ball (ATLAS); Sum of Gaussians (CMS)
 - ▶ Background modelling: from spurious signal studies (ATLAS); Discrete profiling method (CMS)
 - Uncertainties:
 - statistical component: ~ 7.0% (similar)

Systematic component: spurious signal is about 3.8% (ATLAS) and 0% (included in the statistical

error) in CMS

CMS, submit. to JHEP

ATLAS

Diphoton fiducial cross-section = $67 \pm 5(stat.) \pm 4(sys.) fb$ SM = $64 \pm 4 fb$

Diphoton fiducial cross-section = $73.40^{+6.1}_{-5.9} fb$

 $SM = 75.44 \pm 4.1 fb$

Summary

- $\checkmark H \rightarrow \gamma \gamma$ channel fiducial and differential cross sections measurements using full Run2 dataset in ATLAS experiment have been presented:
 - Higgs boson properties and probe to new physics contributions in many observables exploring *Higgs kinematic and jet-kinematic activity in the events*
 - Very good agreement between the measurements and SM predictions:
 - > Statistical uncertainty still the dominant uncertainty source
 - **The interpretation of the measurements using pT(H)** shape information to set constraints on charm- and bottom-quarks Yukawa couplings (κ_c and κ_b):
 - ▶ No significant BSM contributions are observed
 - \triangleright κ_b limits are comparable to the direct searches
 - Stronger limits on κ_c are set compared to direct searches

Stay tuned for Run3 news!

谢谢大家的关注!

Back-up slides

Fraction of signal process in fiducial regions

Baseline fiducial region (particle level):

- $E_T/m_{\gamma\gamma} > 0.35$; $E_T/m_{\gamma\gamma} > 0.25$; isolation requirements; $|\eta| < 2.37$ excluding transition region
- ▶ Sub-sets of the baseline fiducial region (sensitive to different Higgs boson production modes): selections are applied on the electrons, muons, jets and MET
 - **o VBF-enchanced region:** at least two jets, m_{jj} ≥ 600GeV, $|\Delta y_{jj}|$ ≥ 3.5

 - High MET region: large MET > 80 GeV and $p_T^{\gamma\gamma}$ > 80 GeV. Sensitive to VH and ttH production mechanisms and BSM effects (WIMPS)
 - ttH-enchanced region: at least 1 b-jets/no leptons/4jets or at least 1 lepton and at least 3 jets

Differential cross-section vs $\tau_{C,i1}$ and $\sum \tau_{C,i}$

- ▶ Beam-thrust event-shape variable (hadronic observable): boost-invariant along the beam axis
 - $au_{C,j1}$ is the highest value of $au_{C,j1}$ among all jets in the event while $\sum_i au_{C,j}$ is the scalar sum of τ for all jets with $\tau > 5$ GeV

m is the jet mass and y_i its rapidity

$$au_{C,j1}$$

$$p(\chi^2) = 27\%$$
(default)

$$\sum \tau_{C,j}$$

$$p(\chi^2) = 39\%$$
(default)

Good agreement with the **SM** predictions

Systematic uncertainties in $p_T^{\gamma\gamma}$ and N_{jets} bins

- > Systematics uncertainties sources on the signal and background modeling
- ▶ Experimental and theoretical uncertainties uncertainties

Binning choice for different observables

Variable	Bin Edges	$N_{ m bir}$
$p_{ m T}^{\gamma\gamma}$	0, 5, 10, 15, 20, 25, 30, 35, 45, 60, 80, 100, 120, 140, 170, 200, 250, 300, 450, 650, 13000	20
$ y_{\gamma\gamma} $	0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.2, 1.6, 2.0, 2.5	10
$ y_{\gamma\gamma} \ p_{\mathrm{T}_2}^{\gamma 1}/m_{\gamma\gamma}$	0.35, 0.45, 0.5, 0.55, 0.6, 0.65, 0.75, 0.85, 0.95, 10	9
$p_{\mathrm{T}}^{\tilde{\gamma}2}/m_{\gamma\gamma}$	0.25, 0.35, 0.4, 0.45, 0.5, 0.55, 0.65, 0.75, 0.85, 10	9
$N_{ m jets}$	$0, 1, 2, \geq 3$	4
$N_{b ext{-jets}}$	$N_{\text{jets}}^{\text{central}} = 0 \text{ or } N_{\text{lep}} > 0, N_{b\text{-jets}} = 0, \ge 1$	3
$p_{ m T}^{j_1} \ H_{ m T}$	30, 60, 90, 120, 350, 13000	5
	30, 60, 140, 200, 500, 13000	5
$p_{ m T}^{\gamma\gamma j}$	0, 30, 60, 120, 13000	4
$m_{\gamma\gamma j}$	120, 220, 300, 400, 600, 900, 13000	6
$\tau_{C,j1}$	0, 5, 15, 25, 40, 13000	5
$\sum au_{C,j}$	5, 15, 25, 40, 80, 13000	5
$p_{\mathrm{T}}^{\gamma\gamma}$, jet veto 30 GeV	0, 5, 10, 15, 20, 30, 40, 50, 100, 13000	9
$\gamma \gamma$, jet veto 40 GeV	0, 5, 10, 15, 20, 30, 40, 50, 60, 100, 13000	10
$\gamma \gamma$, jet veto 50 GeV	0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 100, 13000	11
$p_{\mathrm{T}}^{\gamma\gamma}$, jet veto 60 GeV	0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 100, 13000	12
m_{jj}	0, 120, 450, 3000, 13000	4
$\Delta \phi_{jj}$	$-\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$	4
$\pi - \Delta \phi_{\gamma\gamma,jj} $	$0, 0.15, 0.65, \pi$	3
$p_{\mathrm{T},\gamma\gamma jj}$	0, 30, 60, 120, 13000	4
VBF-enhanced: $p_{\rm T}^{j_1}$	30, 120, 13000	2
VBF-enhanced: $\Delta \phi_{jj}$	$-\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$	4
VBF-enhanced: $ \eta^* $	0, 1, 2, 10	3
VBF-enhanced: $p_{T,\gamma\gamma jj}$	0, 30, 13000	2

Binning choice for different observables

Variable	Bin Edges					
$p_{\mathrm{T}}^{\gamma\gamma}$ vs $ y_{\gamma\gamma} $	$ y_{\gamma} $ vs $ y_{\gamma\gamma} $	$0.0 < y_{\gamma\gamma} < 0.5$ $0.5 < y_{\gamma\gamma} < 1.0$ $1.0 < y_{\gamma\gamma} < 1.5$ $1.5 < y_{\gamma\gamma} < 2.5$	$p_{\mathrm{T}}^{\gamma\gamma}$: 0, 45, 120, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 45, 120, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 45, 120, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 45, 120, 350	12		
$(p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/m_{\gamma \gamma} \text{ vs } (p_{\rm T}^{\gamma 1} - p_{\rm T}^{\gamma 2})/m_{\gamma \gamma}$	$0.6 < (p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/m_{\gamma \gamma} \le 0.8$	$\frac{p_{\mathrm{T}} \cdot 0, 43, 120, 330}{(p_{\mathrm{T}}^{\gamma 1} - p_{\mathrm{T}}^{\gamma 2})/m_{\gamma \gamma} \cdot 0, 0.3}$ $\frac{(p_{\mathrm{T}}^{\gamma 1} - p_{\mathrm{T}}^{\gamma 2})/m_{\gamma \gamma} \cdot 0, 0.05, 0.1, 0.2, 0.8}{(p_{\mathrm{T}}^{\gamma 1} - p_{\mathrm{T}}^{\gamma 2})/m_{\gamma \gamma} \cdot 0, 0.3, 0.6, 4}$	8			
$p_{\mathrm{T}}^{\gamma\gamma} \mathrm{vs} \; p_{\mathrm{T}}^{\gamma\gamma j}$	$N_{\text{jets}} = 0$ $0 < p_{\text{T}}^{\gamma\gamma j} \le 30$ $30 < p_{\text{T}}^{\gamma\gamma j} \le 60$ $60 < p_{\text{T}}^{\gamma\gamma j} \le 350$	$p_{\mathrm{T}}^{\gamma\gamma}$: 0, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 100, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 45, 120, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 80, 250, 450 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 100, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 120, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 200, 350 $p_{\mathrm{T}}^{\gamma\gamma}$: 0, 250, 650				
$p_{\mathrm{T}}^{\gamma\gamma}$ vs $ au_{C,j1}$	$N_{\rm jets} = 0$ $0 < \tau_{C,j1} \le 15$ $15 < \tau_{C,j1} \le 25$ $25 < \tau_{C,j1} \le 40$ $40 < \tau_{C,j1} \le 400$					
VBF-enhanced: $p_{\rm T}^{j_1}$ vs $\Delta \phi_{jj}$	$-\pi < \Delta \phi_{jj} < 0$ $0 < \Delta \phi_{jj} < \pi$	$p_{\mathrm{T}}^{j_{1}}$: 30, 120, 500 $p_{\mathrm{T}}^{j_{1}}$: 30, 120, 500	4			

S+B fits to $m_{\gamma\gamma}$ in different fiducial regions

 χ^2 test is used to evaluate the p-value compatibility between the measurements and SM predictions

Fiducial region	M	ured	[fb]		SM pre	dicti	on [fb]	95% CL _s upper limit [fb]	<i>p</i> -value	
		±	stat	±	sys					
Diphoton	67	±	5	±	4	64	±	4	-	69%
VBF-enhanced	1.8	±	0.5	±	0.3	1.53	±	0.10	-	64%
$N_{\text{lepton}} \ge 1$	0.81	±	0.23	±	0.06	0.59	±	0.03	-	36%
${ m High}E_{ m T}^{ m miss}$	0.28	±	0.27	' ±	0.07	0.302	2 ±	0.017	0.85	93%
$t\bar{t}H$ -enhanced	0.53	±	0.27	±	0.06	0.60	±	0.05	1.13	79%
Total	132	±	10	±	8	126	±	7	-	69%

 χ^2 computation includes full uncertainties in fitted cross-section and theory uncertainties from SM predictions

Response matrices for $p_T^{\gamma\gamma}$ and N_{jets} bins

p-values: measured/predicted cross-sections

Variable	<i>p</i> -value										
	default	RadISH NNLOJET	NNLOJet	STWZ BLPTW	MATRIX	Sherpa	GoSam	SCETLIB	TAUC	ResBos2	PROVB
$p_{\mathrm{T}}^{\gamma 1}/m_{\gamma \gamma}$	56%	_	_	_	_	_	_	58%	_	32%	
$p_{\mathrm{T}}^{\tilde{\gamma}2}/m_{\gamma\gamma}$	93%	_	_	_	_	_	_	49%	_	2%	
$p_{\mathrm{T}}^{\dot{\gamma}\gamma}$	86%	68%	_	_	_	_	_	78%	_	54%	
$ y_{\gamma\gamma} $	76%	_	_	_	_	_	_	78%	_	66%	
$p_{ m T}^{j_1}$	78%	77%	_	_	_	47%	_	48%	_	38%	
$N_{ m jets}$	95%	_	90%	56%	_	59%	84%	_	_	_	
$N_{b ext{-jets}}$	60%	_	_	_	_	_	_	_	_	_	
$p_{\mathrm{T}}^{\gamma\gamma j}$	81%	_	_	_	_	68%	_	_	_	78%	
$m_{\gamma\gamma j}$	95%	_	_	_	_	95%	_	_	_	_	
$ au_{C,j1}$	27%	_	_	_	_	_	_	_	11%	13%	
$\sum au_{C,j}$	39%	_	_	_	_	_	_	_	_	_	
$H_{ m T}$	46%	_	_	_	_	51%	_	_	_	_	
m_{jj}	79%	_	_	_	_	81%	_	_	_	_	
$\Delta\phi_{jj}$	91%	_	_	_	-	95%	_	_	_	_	
$ \Delta\phi_{\gamma\gamma,jj} $	83%	_	_	_	_	88%	_	_	_	_	
$p_{\mathrm{T},\gamma\gamma jj}$	99%	_	_	_	_	100%	_	_	_	_	
$p_{\mathrm{T},\gamma\gamma jj}$ $p_{\mathrm{T}}^{\gamma\gamma}$ jetveto 30 GeV	84%	_	_	_	83%	_	_	_	_	83%	
$p_{\rm T}^{\gamma\gamma}$ jetveto 40 GeV	95%	_	_	_	45%	_	_	_	_	83%	
$-\gamma\gamma$ jetveto 50 GeV	88%	_	_	_	35%	_	_	_	_	30%	
$p_{\mathrm{T}}^{\gamma\gamma}$ jetveto 60 GeV	67%	_	_	_	52%	_	_	_	_	42%	
$p_{\rm T}^{\dot{\gamma}\gamma}$ vs $ y_{\gamma\gamma} $	75%	_	_	_	_	_	_	78%	_	_	
$p_{\mathrm{T}}^{\dot{\gamma}\gamma}$ vs $ y_{\gamma\gamma} $ $p_{\mathrm{T}}^{\dot{\gamma}\gamma}$ vs $ au_{C,j}$	39%	_	_	_	_	_	_	_	_	_	
$p_{\mathrm{T}}^{\dot{\gamma}\gamma}$ vs $p_{\mathrm{T}}^{\gamma\gamma j}$	96%	_	_	_	_	_	_	_	_	_	
$(p_{\rm T}^{\gamma 1} - p_{\rm T}^{\gamma 2})/m_{\gamma \gamma} \text{ vs } (p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/m_{\gamma \gamma}$	81%	_	_	_	_	_	_	77%	_	_	
$\overrightarrow{\mathrm{VBF}} \ket{\eta^*}$	94%	_	_	_	_	_	_	_	_	_	70°
$\mathrm{VBF}\Delta\phi_{jj}$	68%	_	_	_	_	_	_	_	_	_	65°
$ ext{VBF } p_{ ext{T}}^{j_1}$	77%	_	_	_	_	_	_	_	_	_	70°
$VBF p_{T,\gamma\gamma jj}^{T}$	89%	_	_	_	_	_	_	_	_	_	749
VBF $p_{\rm T}^{j_1}$ vs $\Delta \phi_{jj}$	76%	_	_	_	_	_	_	_	_	_	74°

Interpretation via Effective Field Theory (EFT)

- Strength and Tensor structure of the interactions of the Higgs boson: Effective Field Theory (addition of new interactions CP-even and CP-odd)
 - $\mathcal{L}_{ ext{eff}}^{ ext{SMEFT}}$:

- Constraints derived for the variables: $p_T^{\gamma\gamma}$, N_jets, m_{jj} , $\Delta\phi_{jj}$ and p_T^{j1}
- ▶ BSM contributions probed as non-zero Wilson coefficients
- ▶ Basis of parametrization SMEFT: $c_i(\text{CP-even})/\tilde{c}_i(\text{CP-odd})$ (Wilson coefficients); O_i/\tilde{O}_i (6d operators that introduce new interactions)

Statistical interpretation:

$$L = \exp \left[-\frac{1}{2} \left(\sigma_{\text{obs}} - \sigma_{\text{pred}} \right)^{\text{T}} C^{-1} \left(\sigma_{\text{obs}} - \sigma_{\text{pred}} \right) \right]$$

- \bullet σ_{pred} and σ_{obs} are the k-dimensional vectors from differential cross-section (k = 34, number of bins of the 5 observables distributions)
- ▶ C is the covariance matrix: sum of the statistical, systematic and theoretical covariances

affect VH/VBF

affect $\Delta\phi_{jj}$

interference-terms only

