

The 8th China LHC Physics Workshop (CLHCP-2022), Nanjing November 24th, 2022

Higgs boson differential cross section measurements in the four-leptons final state

Tahir Javaid (Beihang University, Beijing)

On behalf of the CMS collaboration

CMS PAS HIG-21-009

New analysis whose aim is a complete characterisation of the Higgs-to-four-lepton channel using fiducial cross section measurements

*This analysis expands the previous $H \rightarrow ZZ \rightarrow 4\ell$ [EPJC81(2021)488] analysis (Run 2)

*Increase of the number of differential observables (from 4 to 32)

*Latest Run 2 CMS objects calibration

*Reduction of the experimental systematic uncertainties (*improved* measurements of lepton scale factors)

*Interpretation of the p_T^H spectrum:

•Higgs boson trilinear self-coupling (κ_{λ})

•c/b quark couplings ($\kappa_b \kappa_c$)

Tahir Javaid

Event selection and reconstructions

*****Z candidate

• Any OS-SF pair that satisfies $12 < m_{ll(\gamma)} < 120$ GeV *Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z_1 candidate with $m_{ll(\gamma)}$ closest to the PDG m(Z) mass • $m_{Z1} > 40 \text{ GeV}; P_T(l1) > 20 \text{ GeV}; P_T(l2) > 10 \text{ GeV}$ • $\Delta R > 0.02$ between each of the four leptons $\bullet m_{11} > 4$ GeV for OS pairs (regardless of flavor) • Reject 4μ and 4e candidates where the alternative pair $Z_a Z_b$ satisfies $\left| m_{Za} - m_{Z} \right| < \left| m_{Z1} - m_{Z} \right|$ and $m_{Zb} < 12 \text{ GeV}$ • $m_{41} > 70 \text{ GeV}$

*If more than one ZZ candidate is left, take the one with Z₁ mass closest to m₇ and the Z_2 from the candidates whose lepton give higher pT sum.

 Z_1

EPJC81(2021)488

 \mathbb{Z}_2

Higgs boson differential cross section measurements in the four-leptons final state

Background Estimation

- *Irreducible background
 - Production of ZZ via $q\bar{q}$ annihilation or gluon fusion
 - Estimated using simulation

*Reducible background

- Light flavor hadrons misidentified as leptons
- Heavy flavor jets produce secondary leptons through the decay of heavy flavor mesons
- Two independent methods used to estimated Z+X background: OS and SS
 - Fake rates calculated in Z+I control region
 - Z+X yields estimated in orthogonal regions of Z+II control region
 - Final estimate combination of 2 methods
- Templates are built from the control regions in data

EPJC81(2021)488

Higgs boson differential cross section measurements in the four-leptons final state

Systematic Uncertainties

*Experimental uncertainties	
alntaaratad luminasity	Th
Integrated furnitosity	rec
•Lepton identification and reconstruction efficiency \rightarrow	rar
Reducible background	- 4
Lepton scale and resolution	- 4
It energy scale	A r
*Theoretical uncertainties	the
	a c
• QCD uncertainty from renormalization and	
factorization scale	
Our of the Choice of PDF set is determined	
following the PDF4LHC recommendations	
• Uncertainty of 2% on $H \rightarrow 4I$ branching ratio	R
affects only signal yields	

	EPJC81(2021)488	
a uncortaintice of lanton	Summary of inclusive theory uncertain	
le uncertainties of lepton	QCD scale (gg) ±	
construction and selection	PDF set (gg) \pm	
	$gg \rightarrow ZZ$ k-factor (gg) \pm	
inge for	QCD scale ($q\bar{q} \rightarrow ZZ$) +3.2/	
4μ observed 0.0 $\pm 0.0/$	PDF set $(q\bar{q} \rightarrow ZZ)$ +3.1	
4µ channel 0.8 - 1.9%	Electroweak corrections ($q\bar{q} \rightarrow ZZ$) \pm	
4e channel 6 5 - 11%	QCD scale (VBF) +0.4	
	PDF set (VBF) \pm	
	QCD scale (WH) +0.5	
	PDF set (WH) \pm	
reduction of about 5% in	QCD scale (ZH) +3.8	
a la unacrtaintica thanka ta	PDF set (ZH) \pm	
ie 4e uncertainties thanks to	QCD scale (ttH) +5.8	
dedicated RMS method.	$+ PDF set (ttH) \pm 14$	
	$ $ BR(H \rightarrow ZZ \rightarrow 4 ℓ)	

У <u>т</u>	<i>u</i>		
C	Common experimental	uncertainties	
	2016	2017	2018
Luminosity uncorrelated	1 %	2 %	1.5 %
Luminosity corr 16 17 18	0.6 %	0.9 %	2 %
Luminosity corr 17 18	-	0.6 %	0.2 %
Lepton id/reco efficiencies	0.7–10 %	0.6 - 8.5 %	0.6 - 9.5
	Background related u	ncertainties	
Reducible background (Z+X)	25 – 43 %	23 – 36 %	24 – 36
	Signal related unce	ertainties	
Lepton energy scale	0.01%(µ) - 0.06%(e)	0.01%(µ) - 0.06%(e)	0.01%(µ) - 0
Lepton energy resolution	3%(µ) - 10%(e)	3%(µ) - 10%(e)	3%(µ) - 10

Higgs boson differential cross section measurements in the four-leptons final state

Fiducial/Differential Cross Section measurement

- * Definition of the fiducial phase space of $H \rightarrow ZZ \rightarrow 4l$
- * Number of events of different final state f and different year y in the given bin i are expressed as a function of 4l invariable mass

* Fiducial + non-fiducial resonances	
signal contribution:	
Shape is described by double-sided	
Crystal Ball function.	Le
Normalization is proportional to the	Su
fiducial cross section.	Ac
\star Non-resonant signal contribution	PS Su
Arises from WH, ZH ttH where one of	54
the leptons from Higgs is lost or not	Ex
selected.	In
Modeled by Landau distribution	In
Treated as background	Di
	In
	In

EPJC81(2021)488

$$\sigma_{i} = \frac{N_{reco, i}}{C_{i} * A_{i} * L * B} \longrightarrow \sigma_{fid, i} * B = \frac{N_{reco, i}}{C_{i} * L}$$

$$N_{\text{obs}}^{f,i,y}(m_{4\ell}) = N_{\text{fid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonfid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonres}}^{f,i,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y}(m_{4\ell})$$
$$= \sum_{j}^{\text{genBin}} \epsilon_{i,j,y}^{f,y} \cdot (1 + f_{\text{nonfid}}^{f,i,y}) \cdot \sigma_{\text{fid}}^{f,j,y} \cdot \mathcal{L} \cdot \mathcal{P}_{\text{res}}^{f,y}(m_{4\ell})$$
$$+ N_{\text{nonres}}^{f,i,y} \cdot \mathcal{P}_{\text{nonres}}^{f,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y} \cdot \mathcal{P}_{\text{bkg}}^{f,i,y}(m_{4\ell})$$

Requirements for the H $\rightarrow 4\ell$ fiducial phase space

Lepton kinematics and isolation

eading lepton $p_{\rm T}$	$p_{\rm T}>20{ m GeV}$
ab -leading lepton $p_{\rm T}$	$p_{\rm T} > 10 {\rm GeV}$
dditional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m Ge}$
seudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4
Im of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$
Event topology	
kistence of at least two same-flavor OS lepton pairs, where leptons	s satisfy criteria above
v. mass of the Z_1 candidate	$40 < m_{Z_1} < 120$
v. mass of the Z_2 candidate	$12 < m_{Z_2} < 120$
istance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for
v. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4 \mathrm{Ge}$
v. mass of the selected four leptons	$105 < m_{4\ell} < 160$

Higgs boson differential cross section measurements in the four-leptons final state

Results

Inclusive fiducial cross section

Differential production observables	Differe obs
$p_T^H y_H p_T^{j1} N_{jets}$	m_{Z1} m
p_T^{Hj} m_{Hjj} p_T^{j2} T_B^{max} T_C^{max}	$\cos(\theta_1)$
p_T^{Hjj} m_{jj} $ \Delta \eta_{jj} $ $ \Delta \phi_{jj} $	D_{0-}^{dec} D_{CP}^{dec} D

Tahir Javaid

Higgs boson differential cross section measurements in the four-leptons final state

Double-differential observables

 T_C^{max} vs p_T^H

 m_{Z1} vs m_{Z2}

 p_T^H vs p_T^{Hj}

 $|y_H|$ vs p_T^H

 N_{jet} vs p_T^H

 p_T^{j1} vs p_T^{j2}

Interpretations

 $k_{\lambda}, k_{c}, k_{b}$

Results

Inclusive fiducial cross section

Interpretations

k

Tahir Javaid

Higgs boson differential cross section measurements in the four-leptons final state

Double-differential observables $T^{max} vs p^{H}_{\pi}$

 N_{jet} vs p_T N_{jet} vs p_T^H

 $H_{VG} nH$

 p_T^{j1} vs p

 $\lambda_{\lambda}, k_{c}, k_{b}$

- from this method for **differential** measurements

Tahir Javaid

Results: Inclusive (all channels)

Results: Inclusive (all channels)

$$\sigma^{\text{fid}} = 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.15}_{-0.14} \text{ (sys)} = 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.12}_{-0.12} \text{ (ele)}^{+0.06}_{-0.05} \text{ (lumi)}^{+0.06}_{-0.05}$$

Inclusive fiducial cross section

Differential production observables	
$p_T^H y_H p_T^{j1} N_{jets}$	
p_T^{Hj} m_{Hjj} p_T^{j2} T_B^{max} T_C^{max}	
p_T^{Hjj} m_{jj} $ \Delta \eta_{jj} $ $ \Delta \phi_{jj} $	

Interpretations

k

Double-differential observables

 T_C^{max} vs p_T^H

 m_{Z1} vs n

p

 p_T^{j1} vs p_T^{j1}

 $K_{\lambda}, K_{c}, K_{b}$

Results: Differential

***Revised binning** w.r.t previous analyses

 $*p_T(H)$ spectrum measured with an average precision of **35%** (in some bins down to 20%)

*Extension of the jet phase space (from $|\eta_{jet}| < 2.5$ to $|\eta_{jet}| < 4.7$); thanks to the improved CMS jet reconstruction

Results: Differential- Rapidity-weighted jet observables

test of QCD resummation since their resummation structure is different from p_T (jet).

Tahir Javaid

Observables defined as the transverse momentum of the jet weighed by a function of its rapidity. They can be factorised and re-summed allowing for precise theory predictions and can be used as a

$$= m_T^j e^{-|y_j - Y_H|}$$

Results: Differential- Rapidity-weighted jet observables

test of QCD resummation since their resummation structure is different from p_T (jet).

Tahir Javaid

Observables defined as the transverse momentum of the jet weighed by a function of its rapidity. They can be factorised and re-summed allowing for precise theory predictions and can be used as a

$$= m_T^j e^{-|y_j - Y_H|}$$

Phys.Rev.D 91 (2015) 5, 054023

Differen obsei
m_{Z1} m_{Z2}
$\cos(\theta_1)$ co
D_{0-}^{dec} D_{CP}^{dec} D_{0h+}^{dec}

ential decay ervables Φ_1 Φ l_{Z2} $\cos(\theta_2)$ $\cos(\theta^*)$

 $D^{Z\gamma,dec}_{\Lambda1}$

 D_{int}^{dec}

Double-differential observables

Interpretations

 $D^{dec}_{\Lambda 1}$

Results: Differential- Decay observables

The kinematics of the decay of the H boson in 4 leptons is fully described by the Higgs boson's mass and 7 parameters:

*The two **Z masses** (**Z1** and **Z2**)

***Three angles** describing the **fermion kinematics** (Φ , cos θ_2 , cos θ_1)

*** Two angles** connecting **production to decay** $(\Phi_1, \cos \theta^*)$

Tahir Javaid

Higgs boson differential cross section measurements in the four-leptons final state

Results for decay observables are presented in **2e2mu** and **4e+4mu**

final states as well.

The **same-flavour lepton interference** makes the shapes in 2e2mu

and 4e/4mu final states different

Results: Differential- Decay observables

The kinematics of the decay of the H boson in 4 leptons is fully described by the Higgs boson's mass and 7 parameters:

*The two **Z masses** (**Z1** and **Z2**)

* Three angles describing the fermion kinematics (Φ , Φ)

Two angles connecting production to decay (Φ_1 , cos

Tahir Javaid

Higgs boson differential cross section measurements in the four-leptons final state

$$\cos \theta_2, \cos \theta_1)$$

Results: Differential- Matrix Elements Discriminants

Probe HZZ vertex via Matrix-Element discriminants sensitive to BSM physics

$\varepsilon_2)$	Coupling	g_4^{ZZ}	g_2^{ZZ}	k_1^{ZZ}	
M	Discriminants to separate hypothesis	\mathscr{D}_{0-}^{dec}	\mathcal{D}_{0h+}^{dec}	$\mathscr{D}^{dec}_{\Lambda 1}$	Ci
= 2	Interference discriminants	\mathscr{D}_{CP}^{dec}	\mathcal{D}_{int}^{dec}	-	

obs

Double-differential observables T_C^{max} vs p_T^H m_{Z1} vs m_{Z2}

 N_{jet} vs p_T^H

 $|y_H|$ vs p_T^H

 p_T^H vs p_T^{Hj}

 p_T^{j1} vs p_T^{j2}

Interpretations

(i) $\tau_{\rm C}^{\rm max}$ vs $p_{\rm T}^{\rm H}$

obs

Double-differential observables

Interpretations

 k_{λ}, k_c, k_b

Results: Higgs boson self-coupling K_{λ}

The **transverse momentum** is used to set constraint on κ_{λ} since it is the most sensitive observable to

probe the H boson self-coupling via single Higgs production that is sensitive to κ_{λ} at NLO EW

Observed (expected) excluded κ_{λ} range from @ 95% CL:

 $-5.5(-7.7) < \kappa_{\lambda} < 15.1(17.9)$

Differential theoretical predictions are available for VBF, VH, and

ttH; the inclusive parametrisation is used for ggH

First time the result is presented in a **fiducial** analysis of single-Higgs production

Results: Higgs boson self-coupling κ_{λ}

The **transverse momentum** is used to set constraint on κ_{λ} since it is the most sensitive observable to

probe the H boson self-coupling via single Higgs production that is sensitive to κ_{λ} at NLO EW

Observed (expected) excluded κ_{λ} range from @ 95% CL:

 $-5.5(-7.7) < \kappa_{\lambda} < 15.1(17.9)$

Differential theoretical predictions are available for VBF, VH, and

ttH; the inclusive parametrisation is used for ggH

First time the result is presented in a **fiducial** analysis of single-Higgs production

Competitive with many HH analyses (direct search), i.e. **bbZZ**, **bbbb merged**, and **multi-lepton**

Results: Higgs boson coupling to b/c quarks (\kappa_{h},\kappa_{c})

variation of the **normalisation**

*Simultaneous fit for coupling modifier k_b , k_c assuming (strongly depending on the assumption of the branching ratios) (left) coupling dependence of the branching fractions (shape+normalization) (right) branching fractions implemented as nuisance parameters with no prior constraint (shape-only) *Observed and expected 95% confidence intervals for the Yukawa coupling modifiers

Tahir Javaid

The ggH transverse momentum is used to set constraints on κ / κ_{h} by using information from both the shape and the

Higgs boson differential cross section measurements in the four-leptons final state

Summary

and fiducial cross section measurements and interpretations

*All results show an overall good agreement with the SM

*60 fiducial XS results, 33 observables (28 of them are new!), and 3 interpretations make this paper one of the most

extensive fiducial analysis ever performed (today shown only a small subset of the results)

***Better CMS objects calibration** and improvements in the analysis strategy led to very precise measurements

(less than 10% inclusively)

*We are on the verge of probing the scalar sector with very high precision

*The analysis provides a comprehensive characterisation of the Higgs-to-four-lepton channel using differential

Higgs boson differential cross section measurements in the four-leptons final state

Inank

Tahir Javaid

BACKUP SLIDES

Results of 1D Differential Cross Section

* Differential cross sections for observables of **Higgs boson and jet system**

* The acceptance and theoretical uncertainties in the differential bins are calculated using the POWHEG (blue), NNLOPS (orange), and MadGraph aMC@NLO (pink) generators.

* The sub-dominant component of the the signal (VBF + VH + ttH) is denoted as XH.

Results of 1D Differential Cross Section

* Differential cross section as function of m_{Z1}

* The acceptance and theoretical uncertainties in the differential bins are calculated using the POWHEG (blue), NNLOPS (orange), and MadGraph aMC@NLO (pink) generators.

* The sub-dominant component of the the signal (VBF + VH + ttH) is denoted as XH.

Results of 1D Differential Cross Section

* Differential cross section as function of m_{Z2}

 \star The acceptance and theoretical uncertainties in the differential bins are calculated using the POWHEG (blue), NNLOPS (orange), and MadGraph aMC@NLO (pink) generators.

* The sub-dominant component of the the signal (VBF + VH + ttH) is denoted as XH.

Results of 2D Differential Cross Section measurements

* Double Differential cross sections results

* The acceptance and theoretical uncertainties in the differential bins are calculated using the POWHEG (blue), NNLOPS (orange), and MadGraph aMC@NLO (pink) generators.

* The sub-dominant component of the the signal (VBF + VH + ttH) is denoted as XH.

Matrix Element Discriminants

*HVV scattering amplitude of a spin-0 boson H and two spin-one gauge bosons

$$A(HV_{1}V_{2}) = \frac{1}{v} \left[a_{1}^{VV} + \frac{k_{1}^{VV} q_{V1} + k_{2}^{VV} q_{V2}^{2}}{(\Lambda_{1}^{VV})^{2}} + \frac{k_{3}^{VV} (q_{V1} + q_{V2})^{2}}{(\Lambda_{Q}^{VV})^{2}} \right] m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V1}^{*}$$

*Observables sensitive to HVV anomalous couplings using kinematics of leptons in decay

$$\mathcal{D}_{alt} = rac{\mathcal{P}_{sig}(\vec{\Omega})}{\mathcal{P}_{sig}(\vec{\Omega}) + \mathcal{P}_{alt}(\vec{\Omega})} \quad \mathcal{D}_{int} = rac{\mathcal{P}_{int}(\vec{\Omega})}{2 \cdot \sqrt{\mathcal{P}_{sig}(\vec{\Omega}) \cdot \mathcal{P}_{alt}(\vec{\Omega})}},$$

*Six discriminants implemented in the MELA package to completely characterize the HZZ4I decay

/2

 $^{),\mu\nu} + a_3^{VV} f_{\mu\nu}^{*(1)} \bar{f}^{*(2),\mu\nu}$

CP even

- SM-like spin-zero 0+: $a_1^{ZZ}=a_1^{WW}=2$
- Higher order spin-zero 0_h^+ : a_2

CP odd •Pseudoscalar spin-zero 0⁻ : a3

Interpretations -- Constraints on the H boson self-coupling

Probing k_{λ} via single-Higgs decay

* Differential XS measurement as a function of $p_T^H \Rightarrow$ extract limits on H boson self coupling.

$$\mu_{i}^{f} = \mu_{i} \times \mu^{f} = \frac{\sigma^{NLO}}{\sigma_{SM}^{NLO}} \frac{BR(H \to ZZ)}{BR^{SM}(H \to ZZ)} = \frac{1 + k_{\lambda}C_{1,i} + \delta Z_{H}}{(1 - (k_{\lambda}^{2} - 1)\delta Z_{H})(1 + C_{1,i} + \delta Z_{H})} \times \begin{bmatrix} 1 + \frac{(k_{\lambda} - 1)(C_{1}^{\Gamma_{ZZ}} - C_{1}^{\Gamma_{tot}})}{1 + (k_{\lambda} - 1)C_{1}^{\Gamma_{tot}}}\\ \text{production} \end{bmatrix} \times \begin{bmatrix} 1 + \frac{(k_{\lambda} - 1)(C_{1}^{\Gamma_{ZZ}} - C_{1}^{\Gamma_{tot}})}{1 + (k_{\lambda} - 1)C_{1}^{\Gamma_{tot}}}\\ \text{decay} \end{bmatrix}$$

* The cross sections of the different production mechanisms of the H boson

- Parameterized as a function of $k_{\lambda} = \lambda_3 / \lambda_{SM}$,
- To account for NLO terms arising from the H boson trilinear self-coupling
- kinematics;

•
$$C_1^{\Gamma_{ZZ}} = 0.0082$$
 and $C_1^{\Gamma_{tot}} = 2.5 \times 10^{-3}$

• Where $\delta Z_H = -1.536 \times 10^{-3}$ is a universal quantity, $C_1(p_n)$ is dependent on H production model and

Constraints on H boson self-coupling -- C1 coefficients

* In order to compute the scaling functions, $\mu_{i,i}(k_{\lambda})$

- Madgraph5 dedicated hhh-model and reweight tool
- Generate LO events for each production models \bigcirc
- Reweigh to take into account NLO EW corrections
 - Extracted on an event-by-event basis: lacksquare

$$C_1 = xsec_{\mathcal{O}(\lambda_3)} / xsec_{LO}$$

• As input for $\mu_{i,i}(k_{\lambda})$

$$\mu_{i}^{f} = \frac{1 + k_{\lambda}C_{1,i} + \delta Z_{H}}{(1 - (k_{\lambda}^{2} - 1)\delta Z_{H})(1 + C_{1,i} + \delta Z_{H})} \times \left[1 + \frac{(k_{\lambda} - 1)\delta Z_{H}}{(1 - (k_{\lambda}^{2} - 1)\delta Z_{H})(1 + C_{1,i} + \delta Z_{H})}\right]$$

- Differential predictions are available only for VBF, VH, and ttH
- Inclusive value for the parametrization \bullet of the H boson cross section for ggH process

Higgs boson differential cross section measurements in the four-leptons final state

Constraints on Higgs boson couplings modifier

* The transverse momentum spectrum of Higgs boson

- provides a novel approach to constrain the Higgs boson couplings to bottom, and charm quarks.
- * The coupling modifiers are described in the context of the κ -framework.

- * Interpreting the P_H^T spectrum for gluon fusion in terms of modifications of the couplings of the Higgs boson of the combination of two models:
 - **Radish:** contributions of b and c quarks to the loop-induced ggF production
 - Sensitive to the low pT region
 - MadGraph5_aMC@NLO: the quark-initiated production of the Higgs boson.
 - Sensitive to the High pT region \bullet

$$y_f^{SM}$$

Interpretation by kappa framework via P_H^T spectrum

*The cross section value varies following the P_{H}^{T} of different kb, kc parameter values. *The high pT region has been improved by newly running with new setting and high statistics of MadGraph5_aMC.

Tahir Javaid

Higgs boson differential cross section measurements in the four-leptons final state

Parameterization of k_b , k_c

- * Obtain 2D likelihood by varying kc and kb: $\Delta \sigma \rightarrow \Delta \sigma (k_b, k_c)$
- SM
- * We assume a parabolic function for the cross section

$$* \sigma_{ggH} = \left| \sum_{i} A_{i}k_{i} \right|^{2} = Ak_{b}^{2} + Bk_{c}^{2} + Ck_{t}^{2} + Dk_{b}k_{c} + Ek_{b}k_{t} + Fk_{c}k_{t}$$

* Use 6 known points: $\sigma_1(\vec{k_1})\sigma_6(\vec{k_6})$, $\sigma_5(\vec{k_5})$, $\sigma_4(\vec{k_4})$, $\sigma_3(\vec{k_3})$, $\sigma_2(\vec{k_2})$, * Find values of the coefficients by simple matrix inversion $*k_t$ set to 1.0 (SM) for the k_b , k_c analysis

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} \kappa_{b,1}^2 & \kappa_{c,1}^2 & \kappa_{t,1}^2 & \kappa_{c,1}^2 \\ \kappa_{b,2}^2 & \kappa_{c,2}^2 & \kappa_{t,2}^2 & \kappa_{c,2}^2 \\ \kappa_{b,3}^2 & \kappa_{c,3}^2 & \kappa_{t,3}^2 & \kappa_{c,3}^2 & \kappa_{t,3}^2 & \kappa_{c,4}^2 \\ \kappa_{b,4}^2 & \kappa_{c,4}^2 & \kappa_{t,4}^2 & \kappa_{c,4}^2 & \kappa_{t,4}^2 & \kappa_{c,5}^2 \\ \kappa_{b,5}^2 & \kappa_{c,5}^2 & \kappa_{t,5}^2 & \kappa_{c,6}^2 & \kappa_{t,6}^2 & \kappa_{c,6}^2 & \kappa_{t,6}^2 & \kappa_{c,6}^2 & \kappa_{t,6}^2 & \kappa_{c,6}^2 & \kappa_{c,6}^2$$

Higgs boson differential cross section measurements in the four-leptons final state

Tahir Javaid

* Signal model split into ggH and xH processes and the contributions from xH (not ggH) are set to

* Find the cross section for any set of the k's if we know the coefficients A, ..., F

$\kappa_{b,1}\kappa_{c,1}$	$\kappa_{b,1}\kappa_{t,1}$	$\kappa_{c,1}\kappa_{t,1}$]	$\begin{bmatrix} A \end{bmatrix}$
$\kappa_{b,2}\kappa_{c,2}$	$\kappa_{b,2}\kappa_{t,2}$	$\kappa_{c,2}\kappa_{t,2}$	B
$\kappa_{b,3}\kappa_{c,3}$	$\kappa_{b,3}\kappa_{t,3}$	$\kappa_{c,3}\kappa_{t,3}$	C
$\kappa_{b,4}\kappa_{c,4}$	$\kappa_{b,4}\kappa_{t,4}$	$\kappa_{c,4}\kappa_{t,4}$	D
$\kappa_{b,5}\kappa_{c,5}$	$\kappa_{b,5}\kappa_{t,5}$	$\kappa_{c,5}\kappa_{t,5}$	
$\kappa_{b,6}\kappa_{c,6}$	$\kappa_{b,6}\kappa_{t,6}$	$\kappa_{c,6}\kappa_{t,6}$	

Statistical analysis of k_b , k_c

* An extended likelihood function is reconstructed by

$$\mathscr{L}(\overrightarrow{\Delta\sigma}|\overrightarrow{\theta}) = \prod_{i=1}^{n_{bins}} \prod_{k=1}^{n_{cat}} \prod_{l=1}^{n_{\theta}} (pdf_i^k(\mathcal{O}_l|\overrightarrow{\Delta\sigma},\overrightarrow{\theta}))^l$$

 $* n_{bins}^{reco}$ is the number of reconstructed bins, n_{cat} is the number of categories for the decay channel, and $n_{\mathcal{O}}$ is the number of bins for observable \mathcal{O} .

 $* pdf_i^k(\mathcal{O}_l | \overrightarrow{\Delta \sigma}, \overrightarrow{\theta})$ describes the probability to find an event measuring observable \mathcal{O} in reconstructed bin i.

* An overall probability distribution function for the observable \mathcal{O} is constructed by summation of the signal and background distributions of the observable.

* In the case of fitting k's, parameter cross section in terms of k's

*
$$\overrightarrow{\Delta\sigma} \rightarrow \overrightarrow{\Delta\sigma} (k_b, k_c)$$

 $N_{obs}^{ikl} \times Poisson(N_{obs}^{ik} | n_i^{sig,k}(\overrightarrow{\Delta\sigma} | \overrightarrow{\theta}) + n_i^{bkg,k}(\overrightarrow{\theta})) \times pdf(\overrightarrow{\theta})$

Higgs boson differential cross section measurements in the four-leptons final state

Two methods applied in the constrain of $k_h k_c$

* The obtained results vary strongly depending on the assumption of the branching ratios.

* The overall discrimination power is from both the shape and normalization of the theory coupling variations.

* The branching ratios depend on the couplings

• Results obtained this way show the maximum amount of discrimination power including the Impact on the overall

expected normalization, through modifications of **branching ratios** scaled with coupling modifications and also

the constrain by the **Higgs decay width**.

* Freely floating branching ratios

purely the constraints from only the shape.

• The normalization of the parametrization and coupling dependence of BRs are eliminated, and what remains is

Electron Efficiency nuisance

New method to compute uncertainties from T&P measurements for electrons based on RMS

- Scale factors and corresponding uncertainties enter the final result with the power of four —> Electron **reconstruction and selection efficiency** is by far the **leading nuisance** in $H \rightarrow ZZ \rightarrow 4\ell$
- •Computation done with **Tag-and-Probe** (TnP) method
- systematic uncertainty from this region
- **Current method for sys unc**: Summing in quadrature four variations of the nominal setting
 - •Very sensitive to outliers
 - Adding more variations lead to bigger uncertainty
 - •Correlations not taken into account

•New method for sys unc: Combining the four variations by using the RMS

- •Less sensitive to outliers
- Adding more variations does not lead to bigger uncertainty
- Reduced uncertainty in the low-pT region (~40% improvement in the precision)

•Challenge: low-pT electron region (7-20 GeV) where it is hard to distinguish signal from QCD background -> Large

