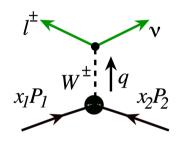
W[±]-BOSON PRODUCTION IN P–PB AND PB–PB COLLISIONS WITH ALICE AT THE LHC

Mingrui Zhao for the ALICE collaboration

Date: 07 July 2022

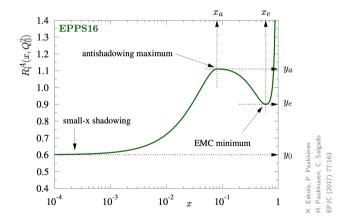
China Institute of Atomic Energy mingrui.zhao@mail.labz0.org

CLHCP

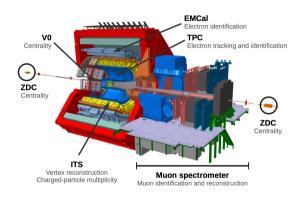

Physics motivation

W bosons:

- O Production in Drell-Yan process:
 - Heavy mass, produced in the hard processes, during the initial stages of the collision.
 - Weakly interacting particles.
 - QCD factorization:


$$\sigma_{AB} \propto \sum_{q} \frac{4\pi e_{q}^{2} \alpha^{2}}{9\hat{s}} f_{q}(x_{1}, Q^{2}) f_{\bar{q}}(x_{2}, Q^{2})$$

 Leptonic decay: insensitive to the strongly-interacting medium.



Physics motivation

- O Parton Distribution Function (PDF) is modified by nuclear effects.
 - Robust understanding of nuclear PDF (nPDF) is crucial to all the heavy-ion measurements.

The ALICE detector

p–Pb and Pb–Pb: Muons reconstructed in the forward spectrometer $(-4<\eta<-2.5).$ Probing of the low $(\sim 10^{-4}$ to $\sim 10^{-3})$ and high $(\sim 10^{-1}$ to almost unity) Bjorken-x regions.

 $2.03 < y_{\rm cms} < 3.53$

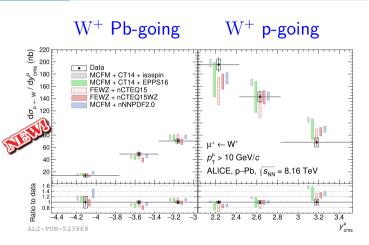
p-Pb, Pb-going:

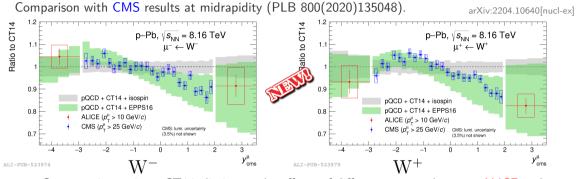
 $-4.46 < y_{\rm cms} < -2.96$

W^{\pm} in p-Pb at 8.16 TeV

Differential cross sections as a function of rapidity, compared to theoretical predictions.

- All models underestimate data for bins closest at midrapidity
 - o Both at forward and backward (1.4 and 2σ from EPPS16 predictions).
 - Powerful to constrain Bjorken-x dependent PDFs and nPDFs.

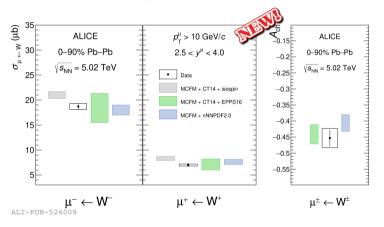



arXiv:2204.10640[nucl-ex]
CT14: Phys. Rev. D 93, 033006 (2016)
nCTCQ15VV: EPJC 80(2020)968
nNNPDF2.0: JHEP 90(2020)183
EPPS16: EPJC(2017) 77:163
MCFM: EPJC 77(2017)7
nCTEQ15: Phys. Rev. D 93, 085037 (2016)
FEWZ: Comp. Phys. Comm. 182(2011)2388-2403

W^{\pm} in p-Pb at 8.16 TeV

Differential cross sections as a function of rapidity, compared to theoretical predictions.

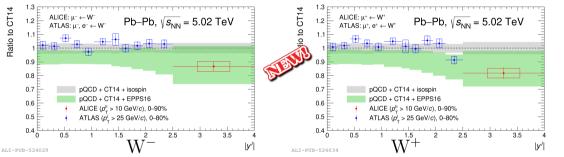
 \odot 3.5 σ deviation from free-PDF calculation for W⁺ at forward rapidity for the bin at largest rapidity



- \bigcirc Cross section ratio to CT14 eliminates the effects of different p_{T} cuts between ALICE and CMS. The ratio encodes the effects of the nuclear modifications.
- ALICE results in agreement with the trend at the edges of the CMS acceptance. In agreement with the trend predicted by EPPS16.

arXiv:2204.10640[nucl-ex]

Cross section and charge asymmetry

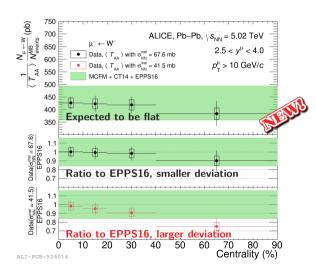

- Models with free-PDF overestimate the cross section while models including nuclear effects agree with the measurement very well.
 - Suggests visible nuclear effects.

$$A_{\rm ch} = \frac{N_{\mu^+ \leftarrow W^+} - N_{\mu^- \leftarrow W^-}}{N_{\mu^+ \leftarrow W^+} + N_{\mu^- \leftarrow W^-}} \label{eq:Ach}$$

W^{\pm} in Pb-Pb at 5.02 TeV

Comparision with ATLAS results at midrapidity (EPJC 79(2019)935).

arXiv:2204.10640[nucl-ex]

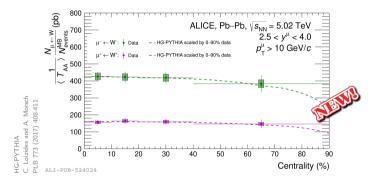


- EPPS16 provides good predictions of ALICE data, while it underestimates the ATLAS measurement.
- \bigcirc Interesting to do the η -differential study in forward rapidity.

W^{\pm} in Pb–Pb at 5.02 TeV

Centrality-dependent $\langle T_{AA} \rangle$ -scaled yield

arXiv:2204.10640[nucl-ex]



- \odot Biased by determination of nuclear overlapping function T_{AA} .
- O If the measurement is rescaled with alternative $T_{\rm AA}$ value:
 - Alternative $T_{\rm AA}$ forcing the ATLAS W/Z measurements to agree with the EPPS16 calculation.
 - Measurement with this alternative T_{AA} is less agreement with EPPS16.

Eskola et al. (PRL 125(2020)212301)

Centrality-dependent $\langle T_{AA} \rangle$ -scaled yield

arXiv:2204.10640[nucl-ex]

- HG-PYTHIA: includes biases from event selection and geometry that cause suppression in peripheral collisions.
- \bigcirc Neutron-skin effect affects the production of W⁺ and W⁻ in different directions.

Conclusions and perspectives

In p-Pb and Pb-Pb:

- Production measurements of W and Z bosons provide important inputs to nPDF global fits. Deviation on nPDF prediction is visible in p-Pb collisions in closest at midrapidity region (W⁻).
- \odot Measurement with Run3 and Run4 sample: more statistics, p_{T},y ,multiplicity-differential with more bins.

Thank you for your attention!

Back-up