

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

10 years of Higgs @ ATLAS

3

Associated Content

The Higgs boson turns ten

Nature Perspective 04 Jul 2022

Sections

The Higgs boson discovery turns ter

A portrait of the Higgs boson by the CMS

experiment ten years after the discovery

Figures References

Collection

View all journals Search Q Login (R

Sign up for alerts 💭 🛛 RSS feed

10 years of Higgs @ ATLAS

- In LHC Run-2, 30x more Higgs recorded by the ATLAS detector, allows for
 - Precise measurements of cross-sections, couplings and other properties
 - Search for rare decay modes
 - Hints of BSM effects
- A combination of these novel work make an examination of the Standard Model expectation with unprecedented precision possible

Input analyses

2022/11/26

Analysis	Production modes	Integrated lumi (fb ⁻¹)	Used in	
Н→үү	All	139	All	
H→ZZ→4I	All	139	All	
Η→ττ	All	139	All	
H→WW	ggF, VBF	139	All	
H→bb	VH	139	All	
	VBF	126	All	
	ttH	139	All	
H→bb boosted	ggF, VBF, VH, ttH	139	STXS	
H→WW	VH	36.1	All but STXS	
H→multilepton	ttH	36.1	All but STXS	
H→invisible	VBF	139	К	
H→invisible	ZH	139	К	
H→Zγ	All	139	All but STXS	
Η→μμ	All	139	All but STXS	
H→cc	qq→WH/ZH	139	К	

New wrt combination 2021 New wrt combination Run-1

- Almost all measurements updated to full Run-2 dataset
- A combination of all major ATLAS Higgs analyses to get more sensitive and less model-dependent results on Higgs interactions

Global signal strength

Combination of all production/decay

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.).

Production and decay

• Measurements of production cross sections

- SM compatibility: p_{SM}=65%
- Compared to Run-1 combination
 - Observation of WH & ZH
 - σ_{WH}: 3.51 σ→5.8 σ
 - σ_{ZH}: 3.63 σ→5.0 σ
 - Better precision

- $\sigma_{ggF}: 9\% \rightarrow 7\%$
- σ_{VBF}: 19%→12%
- Independent tH measurement
 - Upper limit on tH of 15(7) x SM at 95%
 CL

Production and decay

• Measurements of all cross sections and branching ratios available SM compatibility (p-value): 72%

 $\sigma \times B$ normalized to SM prediction

- Thanks to updated analyses, the granularity is improved compared to Run-1 combination
 - Split of VH production in bb, WW & γγ channels
 - Rare production of tH mode in γγ channel
 - Rare decay: μμ

•

- Introduce one scale factor κ per SM particle with observable "Higgs coupling" at LHC
 - Bosons: κ_W , κ_Z , κ_γ , κ_g
 - Fermions: κ_t , κ_b , κ_τ , κ_μ
- Considering LO modifiers, they are parameterized as:

$$\sigma_i \times \mathbf{B}(H \to f) = \frac{\sigma_i \times \Gamma_f}{\Gamma_H} = \frac{\kappa_i^2 \kappa_f^2}{\kappa_H^2} \sigma_i^{\mathrm{SM}} \times \mathbf{B}^{\mathrm{SM}}(H \to f)$$

- $\kappa_V vs \kappa_F$: use one uniform modifier for vector boson coupling and another for fermions
- Consider only SM particles contributions to the total width of Higgs
- SM compatibility: p-value = 14.3%
- Linear correlation between κ_V & κ_F : 39%

				120		
		measurements		Im		Measurements
κ _v	obs.	1.04 ^{+0.03} -0.03	VS		obs.	1.05 ^{+0.04} -0.04
	exp.	1.00 ^{+0.03} -0.03		κ _V	exp.	1.00+0.04-0.04
K _F	obs.	0.95 ^{+0.05} -0.05		K _F	obs.	1.05 ^{+0.09} -0.09
	exp.	1.00 ^{+0.05} -0.05			exp.	$1.00^{+0.09}$ -0.09

Run-1 combination

 Uncertainties reduced compared to Run-1 combination

- All modifiers assumed to be positive & only SM particles in loop processes
- No invisible or undetected non-SM Higgs decays
- Scaled by κ_Fm_F/v for fermions and √κ_vm_v/v for bosons, measurements are nicely plotted as a function of the particles' mass to display the expected mass dependence in SM
- Upper limit on κ_c of 5.7 (7.6) x SM at 95% CL
- SM compatibility:

- p-value = 56% ($\kappa_c = \kappa_t$)
- p-value = 65% (κ_c float)

- Allowing for non-SM particles in loop processes, with effective coupling strengths
- κ_t allowed to be negative

$$\Gamma_H(\boldsymbol{\kappa}, B_{\text{inv.}}, B_{\text{u.}}) = \kappa_H^2(\boldsymbol{\kappa}, B_{\text{inv.}}, B_{\text{u.}}) \Gamma_H^{\text{SN}}$$
$$\kappa_H^2(\boldsymbol{\kappa}, B_{\text{inv.}}, B_{\text{u.}}) = \frac{\sum_p B_p^{\text{SM}} \kappa_p^2}{(1 - B_{\text{inv.}} - B_{\text{u.}})}.$$

- Upper limit on
 - B_{invisible}: 0.13 (0.08)
 - B_{undetected}: 0.12 (0.21)
- SM compatibility:

- p-value = 56% ($\kappa_c = \kappa_t$)
- p-value = 65% (κ_c float)

Simplified Template Cross Section

- Split phase space of Higgs production ATLAS Run 2 processes into 36 kinematic regions defined by kinematics of Higgs and associated jets, W, Z bosons
- Goal:

- Provide sensitivity to BSM
- Avoid large theory uncertainties in predictions
- Minimize model-dependence from acceptance extrapolations
- SM compatibility (p-value): 92%

Crucial contributions from China

- China high-energy physics community made crucial contribution to the Higgs combination measurement:
- SJTU/TDLi: INT note editor, input validation, production mode and BR
- IHEP: analysis contact, input & validation, workspace preparation, global signal strength, STXS
- Nanjing University: input liaison & validation, 2HDM interpretation
- Shandong University: input & validation, production mode and BR
- USTC: input liaison & validation

Conclusions

- In the 10 years since the discovery of Higgs boson, many measurements have been performed by the ATLAS collaboration
 - All main production and decay modes @ LHC have been observed
 - Hints of rare decays have been seen
- A combined measurement of Higgs interactions has been presented
 - Unprecedented precision reached on cross-section, branching ratio & coupling measurements
 - Kinematic dependence of production cross sections has been studied across a wide range of phase space
 - Limits on BSM effect revealed
- The properties of Higgs boson show good agreement with Standard Model expectation!
- Looking forward to future ATLAS results of more precise measurements and observation of rare processes!

Backup

σ13/σ8

2.3

2.4

2.0

2.1

2.4

3.8

3.9

60000000 "

g QQQQQQQQ

18

t/b

-- H

 \bar{t}/\bar{b}

2022/11/26

CLHCP 2022

CLHCP 2022

2022/11/26

23