

New physics searches with boosted objects tagging at the ATLAS experiment

C-LHCP workshop

24th November 2021

Antonio Giannini University of Science and Technology of China

Outline

New physics searches with boosted objects tagging at the ATLAS experiment

- Why do we need boosted object tagging?
- Latest results about boosted jet tagging:
 - techniques and calibrations
 - double flavour tagging (bb)
 - anomaly detection
- Interplay of the novel techniques with the physics search results

*** The material is a biased selection of all the approaches and works done in ATLAS on this topic!

Why high-mass searches?

- Several theoretical models foresee the presence of NP beyond the SM
- Heavy new particles decaying into VV pairs:
 - Spin-0, Randal Sundrum (RS) Radions
 - Spin-1, Heavy Vector Triplet (HVT)
 - Spin-2, RS Gravitons

- Diboson interactions are a key process in the LHC program
 - Higgs discovery has a been a milestone probe of the SM
- However, *diboson physics* may still hide New Physics (NP)!!

How high-mass searches?

- Many high mass diboson searches have been performed using run-2 data
 - PUB-2021-018, ATLAS-CONF-2022-028
- The overall strategy is to look for bumps in the invariant mass spectrum in several final states:
 - VV ==>> fully leptonic, semi-leptonic, fully-hadronic
 - VH ==>> semi-leptonic, fully hadronic
 - XH ==>> fully-hadronic
- Why hadronic final states?
 - higher BR of the bosons but more challenges to reduce the background processes!
- At high-mass, i.e. high-pT of the bosons, the decay products are boosted and merged reconstructed in one large-R jet (1.0)

Boosted jets: Increasing transverse momentum

2005

1.5

Generated jet p_ [TeV]

Events / 5 GeV

20000

10000

W/Z jet tagger calibration

Jet.2

- Jet tagging tools are really improved using sophisticated reconstruction algorithms and JetSubStructure (JSS) information:
 - high bkg rejection
- Other calibration approach available here, ATL-

PHYS-PUB-2020-008

C-LHCP workshop - 2022

JHEP09(2019)091

) Moving forward: Machine Learning

ATL-PHYS-PUB-2021-029

C-LHCP workshop - 2022

tagger

What about the Higgs? Boosted Xbb

- We have very powerful flavour tagging algorithm to identify b-jets (DL1r):
 - FTAG-2018-01, ATL-PHYS-PUB-2020-014
- Flavor tagging info are plugged into a DNN:
 - up to 3 VariableRadiusTrackJets reconstructed within the large-R jet
 - DL1r information only, to avoid any mass sculpting

The last bins are affecting more high mass searches ===>> techniques statistics dominated

ATL-PHYS-PUB-2021-035

Y -> XH search use case

- First analysis using the boosted Xbb tagger
 - Y—> XH high mass search
- Interesting final state:
 - SM Higgs + BSM X boson jet
 - few assumption on the signal model
- Challenges:
 - QCD multijets bkg dominated
 - boosted jet tagging

ATLAS-CONF-2022-045

X

Looking for anomalies in jets

- Many many many BSM searches performed in the last years
 - are we looking for in the right places?
 - are we using the best signal models to optimise our analyses?

• Revert the strategy:

- model independent searches: minimal assumptions, loose phase spaces
- train our ML on data to learn directly on real data and try to spot any anomaly

Anomaly detection via jets

- A novel ML technique is used to train on jets:
 - VAE-RNN: Variational Auto-Encoder (VAE) to exploit the latent space and RNN to deal with jets constituents (paper link)
- First published results on ATLAS data:
 - again, YXH has been a milestone effort
 - super interesting challenges to develop new algorithms,

LHC Olimpics, Dark Machines

ATLAS-CONF-2022-045

10

 $Y \longrightarrow XH$: results

ATLAS-CONF-2022-045

- 3 SRs are defined according to tagging of the X boson
 - ▶ <u>resolved regime</u>, X —> jj (2 prongs)
 - ▶ <u>boosted regime</u>, X —> J (2 prongs)
 - anomaly regime, X —> whatever with high Anomaly-Score
- A Bump Hunter search is performed on the smoothly falling invariant mass spectrum of the reconstructed final state

Significant improvement in the exclusion limits in this final states w.r.t. early run-2 search (Phys. Lett. B 779 (2018) 24), given the new Xbb tagger and other analysis optimisations

The largest excess is found in the anomaly SR with a global significance of 1.47 σ considering all mX and mY bins

New physics searches with boosted

objects tagging at the ATLAS experiment

- **Boosted objects tagging** are largely exploited in the ATLAS community!
- High performances allow to reach very sensitive analysis and to put new constraints on NP models
 - anomaly detection approach
 might be the way for long term
 research programs
- New techniques and searches expected during *run-3*, stay tuned!!!

 $\sigma(\mathsf{pp} \to \mathsf{W}' \to \mathsf{WZ})$ [fb]

m(W') [TeV]

backup

Model			Spin -	$m = 800 \mathrm{GeV}$			m = 3 TeV		
Widdel				σ [pb]	${\mathcal B}$	Γ/m	σ [fb]	${\mathcal B}$	Γ/m
RS radion $(k\pi r_c = 35, R \rightarrow WW)$			0.54 (ggF)	0.43	2.6×10^{-3}	1.38 (ggF)	0.44	0.022	
$\Lambda_R = 3 \text{ TeV}$		$R \rightarrow ZZ$	0	1.1×10^{-3} (VBF)	0.21	2.6×10^{-5}	5.5×10^{-3} (VBF)	0.22	0.032
HVT	Model A	$W' \to WZ$		53	0.024	0.026	79	0.020	0.025
		$Z' \to WW$	1	26	0.023		36		
	Model B	$W' \to WZ$		1.6	0.43	0.040	5.5	0.47	0.031
		$Z' \to WW$		0.86	0.41		2.5		
	Model C	$W' \to WZ$		4.0×10^{-3}	0.50	3.5×10^{-3}	1.6×10^{-3}	0.50	3.3×10^{-3}
	(VBF)	$Z' \to WW$		2.7×10^{-3}	0.49		1.0×10^{-3}		
Bulk RS G _{KK}		$G_{\rm KK} \rightarrow WW$	2	1.9 (ggF)	0.28	0.037	0.47 (ggF)	0.20	0.062
$(k/\overline{M}_{\rm Pl} = 1.0)$		$G_{\rm KK} \rightarrow ZZ$	2	0.050 (VBF)	0.14		$1.6 \times 10^{-2} \text{ (VBF)}$	0.10	0.002

HDBS-2018-10

Introduction to diboson

- Diboson signatures open testing scenario of new physics decaying into SM sector
- Several BSM scenarios foresee new massive particles in

ATL-PHYS-PUB-2021-005

Boson jets and taggers

m, [GeV] **ATLAS** Simulation 160 √s = 13 TeV We look for BSM hints in the diboson events --- Z tagger 140 W tagge 120 the SM VV events are hidden in the mass large amount of the QCD bkg 60 · We need powerful **boson-jet tagger** to select 400.5 Generated jet p [TeV] Jet D our signal topology ATLAS Simulation ATLAS Simulation Jet vs = 13 TeV vs = 13 TeV **D2** nTracks Z tagger --- Z tagger di-jets topology, TCC large-R=1. jets W tagge W tagge 28 3-variables based tagger 26 WP optimised using significance 0.50.5 3.5 Generated jet p_ [TeV] Generated jet p_ [TeV] signal efficiency bkg rejection 1000_⊏ Background rejection W-tagging efficiency 1.4 ATLAS Simulation lass efficiencv cut ATLAS Simulation W tagger 900E D2 efficiency cut √s=13 TeV Pythia QCD Multijet √s=13 TeV nTrk efficiency cut 1.2 800 Total efficiency 700 Very high bkg rejection 600 is able to reduce the 0.8 500 E high amount of QCD bkg 400 signal efficiency 300 mostly flat in 200E the observed 0.2 100E data range 0 2.5 3 3.5 1.5 2.5 3.5 0.5 1.5 2 3 Jet p_ [TeV] Jet p_ [TeV]

Parameter	Preselection requirements						
m_{JJ} [GeV]	> 1300						
$p_{\mathrm{T}}(J_1)$ [GeV]	> 500						
m_J [GeV]		m_{J_1}	$> 50 \parallel m_{J_2} > 50$				
$D_{H_{bb}}$	> -2						
	Signal regions						
	Merg	ed	Resolved		Anomaly		
m_H [GeV]			(75, 145)				
$D_{H_{bb}}$	> 2.44						
D_2^{trk}	< 1.2		> 1.2		-		
$ \Delta y_{j_1,j_2} $	-		< 2.5		-		
p_{T}^{bal}	-		< 0.8		-		
Anomaly Score	-	-		-	> 0.5		
	Background estimation regions						
	CR0	HSB0	HSB1	LSB0	LSB1		
m_H [GeV]	(75, 145) (145,		200) (6		55, 75)		
$D_{H_{bb}}$	< 2.44	< 2.44	> 2.44	< 2.44	> 2.44		

VV fully hadronic use case

C-LHCP workshop - 2022

HDBS-2018-31

VVJJ: results

HDBS-2018-31

Model	Signal Region	Excluded mass range [TeV]		
	WW	none		
Radion	ZZ	none		
	WW + ZZ	none		
	WW	1.3–2.9		
HVT model A, $g_V = 1$	WZ	1.3-3.4		
	WW + WZ	1.3–3.5		
	WW	1.3–3.1		
HVT model B, $g_V = 3$	WZ	1.3-3.6		
	WW + WZ	1.3-3.8		
	WW	1.3–1.6		
Bulk RS, $k/\overline{M}_{Pl} = 1$	ZZ	none		
	WW + ZZ	1.3-1.8		

W/Z boosted tagging

ATL-PHYS-PUB-2021-029

