

中國科學院為能物招補完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for nonresonant Higgs boson pair production in the WW $\gamma\gamma$ channel in pp collisions at $\sqrt{s} = 13$ TeV

<u>Chu Wang</u> Institute of High Energy Physics, CAS

26/11/2022

CLHCP 2022

Introductions: HH productions

The Higgs potential:

$$V = \mu^{2}H^{2} + \frac{\mu^{2}}{\nu}H^{3} + \frac{\mu^{2}}{4\nu^{2}}H^{4} = \frac{m_{H}^{2}}{2}H^{2} + \frac{m_{H}^{2}}{2\nu}H^{3} + \frac{m_{H}^{2}}{8\nu^{2}}H^{4}$$

$$Mass-term \begin{array}{l} \lambda_{3}, \text{ trilinear} \\ \text{self-coupling} \end{array} \begin{array}{l} \lambda_{4}, \text{ quartic} \\ \text{self-coupling} \end{array} \begin{array}{l} C_{2\nu}, \text{ VVHH} \\ \text{coupling} \end{array}$$

- The ggHH production provide a window to measure the self-coupling.
- The ggHH is the main production mode of HH in LHC (~31fb).
 - In this analysis, VBF HH not included.
- The cross-section of ggHH is 1000X smaller than ggH.
- BSM processes can increase the HH cross-sections.

CLHCP 2022

Measurement of self-couplings is crucial for understanding the field potential

Introductions: EFT benchmarks

Effective Field Theory Parameterised BSM Lagrangian

$$\mathcal{L}_{BSM} = -\kappa_{\lambda} \lambda_{HHH}^{SM} v H^{3} - \frac{m_{t}}{v} (\kappa_{t} H + \frac{c_{2}}{v} H^{2}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{S}}{12\pi v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{S}}{12\pi v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{S}}{12\pi v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{S}}{12\pi v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{S}}{12\pi v}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{S}}{12\pi v}) (\bar{t}_{R} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{\alpha_{S}}{12\pi v}) (\bar{t}_{R} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{\alpha_{S}}{12\pi v}) (c_{g} H - \frac{\alpha_{S}}$$

- There are 5 parameters in L_{BSM} : k_{λ} , k_t , c_{2g} , c_2 , c_g
- Points in the parameter phase space could be clustered in 20 benchmarks
- EFT MC samples could be reweighted by NLO ggHH samples using the analytic formula derived in [link1][link2]

 $(H^2)G^a_{\mu\nu}G^{a,\,\mu\nu}$

Benchmark	κ,	κ.	Co	C.	Car
SM	1.0	1.0	0.0	0.0	0.0
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
8a	1.0	1.0	0.5	$\frac{0.8}{3}$	0.0
1b	3.94	0.94	$\frac{-1}{3}$	0.75	-1
2b	6.84	0.61	$\frac{1}{3}$	0.0	1.0
3b	2.21	1.05	$\frac{-1}{3}$	0.75	-1.5
4b	2.79	0.61	$\frac{1}{3}$	-0.75	-0.5
5b	3.95	1.17	$\frac{-1}{3}$	0.25	1.5
6b	5.68	0.83	$\frac{1}{3}$	-0.75	-1.0
7b	-0.10	0.94	1.0	0.25	0.5
				\ /	

20 EFT benchmarks

Introductions: Decay modes

- The WW $\gamma\gamma$ channel:
 - $H \rightarrow \gamma \gamma$ process which provides a distinguishable signature consisting of a narrow peak in DiPhoton Mass.
 - $H \rightarrow WW$ contributes a relatively large branching-ratio (~22%).
 - Three final states depending on the W bosons decays:

CLHCP 2022

- Fully-hadronic $(4q + \gamma\gamma)$:
- Semi-leptonic (2q + l + ν + $\gamma\gamma$)
- Fully-leptonic (2l + 2ν + $\gamma\gamma$)

Data and MC samples

- Vsed Full-RunII Data (~138 fb^{-1})
- Signal samples:
 - HH samples generated at NLO with powerheg for each WWyy final state: - MC samples for each of four $k\lambda$ values: 0, 1(SM), 2.45, and 5 - EFT benchmark samples obtained through reweighting of these NLO HH samples • HH samples also generated with madgraph at LO:
- - - LO samples: 1–12 benchmarks + SM.
- Background MC samples:
 - Non-resonant backgrounds (Used to train DNN, not used to modeling background shape) • Single Higgs MC (Backgrounds for all final states in signal region)

 - HH backgrounds ($bb\gamma\gamma$ Samples)

Strategies: Overview

- - Semi-Leptonic: Exactly 1 lepton
 - Fully-Leptonic: Exactly 2 leptons
 - Fully-Hadronic: Exactly O lepton
- different strategies for 3 final states
 - Semi-Leptonic: Multi-Class DNN -Trained a multi-classed DNN to separate HH , H and continuum background.
 - Fully-Leptonic: Cut-based
 - Fully-Hadronic: 2 Binary DNN (WW $\gamma\gamma$ DNN + bb $\gamma\gamma$ killer DNN) -Then trained an additional $bb\gamma\gamma$ DNN to reject $HH \rightarrow bb\gamma\gamma$ events.

Event classification in exclusive categories based on the number of good leptons:

Because of the different statistics and characteristics in different channels, we chosen

-Because of the clean final state and low stats, we chosen cut-based method.

-We trained a WWyy DNN to separate HH from all backgrounds(H + continuum background)

Analysis Strategy: Semi-Leptonic

DNN categorisation:

- There are 3 DNN outputs (HH score, H score, continuum background score)
- Used HH score to do the categorisation.

CMS-PAS-HIG-21-014

Simultaneous optimisation of number of categories and boundaries based on total significance

HH DNN score distributions, the dashed lines indicates the DNN boundaries

C.Wang(IHEP CAS)

Analysis Strategy: Fully-Hadronic

- Fully-Hadronic channel: Events fall into the FH channel if they contain a diphoton candidate, >= 4 AK4 jets and exactly 0 lepton.
 - In this channel, background dominated by QCD, γ + jets and $\gamma\gamma$ + jets.
 - In the perspective of the HH combination, need to minimise the overlap of $HH \rightarrow bb\gamma\gamma$ signal with <u>HIG-19-018</u>.
 - Two dedicated binary DNN classifiers:
 - $WW\gamma\gamma$ DNN:
 - The WWyy DNN could be used to separate HH signal from the backgrounds.
 - $bb_{\gamma\gamma}$ killer DNN:
 - $bb_{\gamma\gamma}$ killer DNN was used to suppress $bb_{\gamma\gamma}$ contamination.
 - The final contamination <3%.
 - Data-driven modeling of QCD and g+jets used in the DNNs trainings.

Analysis Strategy: Fully-Hadronic

- Category optimisation:

 - The events with $WW\gamma\gamma$ score < 0.1 are rejected.

CLHCP 2022

• Before optimise the WWyy DNN boundaries, we applied bbyy score > 0.6.

By using similar optimise strategy in SL channel.

By comparing the total significance of different

The last category has been removed, because the

Finally, we choose 3 categories for FH channel.

Analysis Strategy: Fully-Leptonic

- Selections in FL channel:
 - After the FL pre-selections applied, the dominant backgrounds:
 - Drell-Yan process (Non-resonant backgrounds)
 - VH(H $\rightarrow \gamma\gamma$) process (Resonant backgrounds)
 - We applied few additional selections to remove them and improve the significance.
 - $|M_{\gamma e} M_Z| > 5 \text{GeV}$ to reject Z to ll events
 - $p_T(\gamma_1)/M(\gamma\gamma) > 1/3$, $p_T(\gamma_2)/M(\gamma\gamma) > 1/4$
 - M_{ll} > 100GeV or M_{ll} < 80GeV to suppress DY and VH events
 - $p_T(\gamma\gamma) > 91$ GeV optimized to have better significance while keep enough statistics in mass sideband for background modeling

DiLepton Mass distributions

C.Wang(IHEP CAS)

Data/MC comparison of M_{II} after FL pre-selections applied

Results

▶ Inclusive S+B Fitting:

Inclusive S+B fits for full-run2 data

CLHCP 2022

Institute of High Energy Physics Chinese Academy of Sciences

The observed diphoton mass distribution:

- The signal plus background fit (red)
- The Single-Higgs + continuum background fit (blue)
- Continuum background (black dashed line), with
- bands covering the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties
- All analysis categories are combined and weighted by S over S+B

HH $\rightarrow WW\gamma\gamma$ search: Results

Obs.(exp.) upper limit on HH signal strength: 97(52)×SM at 95% C.L.

• No deviations from SM observed.

- ▷ Obs.(exp.) upper limit on HH signal for 20 EFT benchmarks:
 - 1.7 6.2 (1.0 3.9) pb.

HH $\rightarrow WW\gamma\gamma$ search: Results

$\triangleright \kappa_{\lambda}$ (Higgs self-coupling) and C_{2} (coupling of 2 top and 2 Higgs) scan:

Summary

Search for HH production in WW $\gamma\gamma$ channel (CMS-PAS-21-014):

- This is the first HH $\rightarrow WW\gamma\gamma$ search with full RunII dataset in LHC!
- No deviations from SM observed for SM signal and BSM benchmark signals.
- Observed (expected) results:
 - SM: 96.8 (52.5) x SM (31.05 fb)
 - $k\lambda$ scan: -25.8 (-14.4) to 24.1 (18.3)
 - -C2 scan: -2.4 (-1.7) to 2.9 (2.2)
 - EFT benchmarks: 1.7 6.2 (1.0 3.9) pb

▶ Plan to join in HH combination.

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Thanks for your attention !

C.Wang(IHEP CAS)

