Constraining the Higgs boson self-coupling from singleand double-Higgs production with the ATLAS detector using pp collisions at \sqrt{s} = 13 TeV

Mingxu He¹, on behalf of the ATLAS collaboration ¹IHEP, CAS November 9th 2022

中國科學院為維制程研究所 Institute of High Energy Physics Chinese Academy of Sciences

Higgs boson

- SM predicts a scalar boson, Higgs boson, that gives mass to elementary particles through the spontaneous EW symmetry breaking and Yukawa couplings
- Higgs boson is discovered by ATLAS and CMS experiment at July 4th, 2012
- A new era of particle physics!

Phys. Lett. B716 (2012) 30-61

Higgs potential and Higgs boson self coupling

- ➤ Higgs at 10: interaction with the fermions and vector bosons are precisely studied in Nature 607, 52–59 (2022)
- Higgs self-interaction is also crucial and not discovered by experiment
- Higgs potential shape completely determines the properties of the scalar sector

$$\triangleright V(h) = -\mu^2 \phi^2 + \lambda \phi^4$$

$$> V(h) = \frac{m_h^2}{2}h^2 + \lambda vh^3 + \cdots$$

$$\lambda_{hhh} = \frac{m_h^2}{2v^2}$$

- \triangleright Higgs boson self coupling $\lambda = \sim 0.13$ in SM prediction
- $\succ \kappa_{\lambda} \equiv \kappa_{3} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}}$ introduced to define the deviation of λ from the SM

One of the targets of HL-LHC

Large Hadron Collider (LHC) and ATLAS detector

Picture of LHC

Structure of ATLAS

Luminosity of ATLAS Run 2

- The Large Hadron Collider (LHC) is the world's largest and most powerful particle accelerator
- ATLAS is the largest general purpose particle detector for recording final states of pp collisions
- 10 years later after the discovery, ~9 million Higgs are predicted to be produced (0.3% are accessible) in Run 2, 30 times more than the time of discovery due to higher integrated luminosity (~139 fb⁻¹), higher energy (~8 TeV 13 TeV)
- Studying Higgs coupling properties by combing Run 2 analyses to celebrate the 10th anniversary of the Higgs discovery!

DOUBLE-HIGGS COMBINATION

Higgs boson pair production

Higgs boson pair (HH) production allows to probe directly the Higgs boson self-interaction

Non-resonant pairs of Higgs bosons (HH) arise from several diagrams, some of which interfere destructively. Very small cross-sections!

Gluon-gluon fusion: $\sigma_{ggF}^{SM} \simeq 31 \text{ fb } [13 \text{ TeV}].$

Vector-boson fusion: $\sigma_{VBF}^{SM} \simeq 1.7$ fb [13 TeV].

Other production modes (e.g. VHH, ttHH) have even smaller cross-sections.

HH decays and search channels

- Combine 3 most sensitive channels (no single "golden" channel)
- bbbb (ATLAS-CONF-2022-035)
 - Highest branching ratio, but large multi-jet background!
 - Mostly probes large $m_{HH} \Rightarrow$ sensitivity to HH events with large p_T^H
- **bbττ** (ATLAS-CONF-2021-030)
 - Intermediate branching ratio, but clean final state with moderate backgrounds!
- bbγγ (Phys. Rev. D 106, 052001)
 - Tiny branching ratio, but very clean signature: excellent $m_{\gamma\gamma}$ resolution and small backgrounds!
 - Enhanced sensitivity at low m_{HH} , hence sensitive to the Higgs boson self-interaction.

Multitude of Higgs boson decay modes \Rightarrow $\mathcal{O}(\text{multitude}^2)$ of HH search channels, each with specific experimental challenges and sensitivity reach.

Branching ratio of HH decay mode

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

HH combined results: signal strength

- Overlaps among 3 analyses are negligible
- Upper limits of HH XS are measured

•
$$\mu_{HH} \equiv \frac{\sigma_{ggF+VBF}}{\sigma_{ggF+VBF}^{SM}} = -0.7 \pm 1.2, p_{SM} = 20\%$$

- Upper limit of σ_{HH} at 95% CL: 73 fb (85 fb)
- Compare to 36 fb⁻¹ ATLAS HH combination [Phys. Lett. B 800 (2020) 135103]
 - 3.4 times better exp. upper limit
 - Additional VBF mode; Better particle reconstruction algorithms; Greater number of simulated events; Better analysis strategies; Improved theory predictions

HH combined results: κ_{λ}

- Shape of $\sigma_{HH}(\kappa_{\lambda})$ exclusion limit is determined by $A \times \epsilon$ and kinematic dependence on κ_{λ}
- Most sensitive: $bb\gamma\gamma$ due to low m_{HH}
- 2.4 times better κ_{λ} limit than 36 fb⁻¹ ATLAS HH combination

SINGLE-/DOUBLE-HIGGS COMBINATION

Context of the measurement

- κ_{λ} -only model: κ_{λ} is the only source of physics beyond SM, higher precision on κ_{λ}
- Generic model: κ_{λ} , κ_{V} , κ_{t} , κ_{b} , κ_{τ} all included for the source of physics beyond SM, less model dependence

Nature 607, 52-59 (2022)

- With the introduce of single-Higgs production modes
- the other κ assumptions are well constrained
- without losing too much κ_{λ} sensitivity

κ_{λ} interpretation on single Higgs channel

- Single Higgs boson processes do not depend on κ_{λ} at LO
- However, NLO electroweak loops allow κ_{λ} to affect single Higgs boson production and decay modes

Production mode t/b/c t/b/c t/b/c Nature 607, 52-59 (2022) g 700000 g QQQQQ arXiv:2211.01216 [hep-ex]

NLO

LO

Impacts on Higgs production and decay

Combine with single Higgs

- Combine single- and double-Higgs to have more stringent constraints on κ_{λ}
- Comprehensive combination to relax assumptions on other Higgs couplings (κ_t , κ_V , etc.)

Channel	Integrated luminosity (fb ⁻¹)
$HH \rightarrow b\bar{b}\gamma\gamma$	139
$HH o bar{b} auar{ au}$	139
$HH \to b\bar{b}b\bar{b}$	126
$H \to \gamma \gamma$	139
$H o ZZ^* o 4\ell$	139
$H o au^+ au^-$	139
$H \to WW^* \to e\nu\mu\nu \text{ (ggF,VBF)}$	139
$H \to b\bar{b}$ (VH)	139
$H \to b\bar{b}$ (VBF)	126
$H \to b\bar{b} (t\bar{t}H)$	139

- Overlaps are mostly negligible between single-Higgs and double-Higgs
- Except $4\%~HH \rightarrow bb\tau\tau$ SR events overlapping with $ttH, H \rightarrow \tau\tau$
 - Remove $ttH, H \rightarrow \tau\tau$ categories (low sensitivity to κ_{λ}) in combination

HH+H: constraints on κ_{λ}

arXiv:2211.01216 [hep-ex]

- Di-Higgs has much stronger constraining power than Single-Higgs
- However, it helps to remove assumptions on other kappa

Observed and expected value of the test statistics ($-2 \ln \Lambda$) for κ_{λ}

HH+H: results from κ_{λ} likelihood scans

- Di-Higgs has much stronger constraining power than Single-Higgs
 - Marginal contribution from single H, ~5%
- However, it helps to remove assumptions on other kappa

Observed value and 95% CL limits of κ_{λ}

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1}_{-1}\sigma$
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$ $\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$ $\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$ $\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
Single- <i>H</i> combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
<i>HH</i> + <i>H</i> combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
$HH+H$ combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
$HH+H$ combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_{\lambda} < 6.1$	$-2.1 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Comparison with CMS results

Self coupling measurement results also published by CMS collaboration

Nature 607, 60-568 (2022)

Compatible with observed κ_{λ} limits from CMS!

HH+H: constraints on κ_{λ} versus κ_{t}

arXiv:2211.01216 [hep-ex]

Observed and expected constraints in the κ_{λ} - κ_{t} plane from single-Higgs, double-Higgs and their combination

- HH only can't constrain κ_t , κ_{λ} simultaneously
 - κ_t , κ_λ almost fully correlated in ggF HH XS interpretation
- With single-Higgs, assumption on κ_t can be relaxed without losing κ_{λ} sensitivity

Summary

- Elusive non-resonant pairs of Higgs bosons are the prime experimental signature of the Higgs boson self-interaction
- Di-Higgs only results are included as it is done for the first time using full Run 2 data
- ➤ Electroweak corrections in single-H processes provide additional sensitivity to the Higgs boson selfinteraction
- A combination of single- and double-Higgs full Run 2 analyses is presented to provide the most constraint results on the Higgs self-coupling to date
 - \triangleright At 68% C.L., the observed (expected) allowed interval of κ_{λ} : [-0.4, 6.3] ([-1.9, 7.5])
- Results were published in July 4, 10 year Higgs Symposium and already submitted to PLB (arXiv:2211.01216 [hep-ex])
- Stay tuned for better results from LHC Run3 and HL-LHC results!

Backup

HH combined results: κ_{2V}

- VBF is sensitive to HHVV interaction, constrain κ_{2V} first time in combination
- Tight m_{HH} is more sensitive to κ_{2V} , **bbb** contributes most
- Only include resolved bbbb final states, expect higher significance in boosted case
 - $(\kappa_{2V} \in [0.62, 1.41]$ at 95% CL in boosted bbbb in CMS, exclude $\kappa_{2V} = 0$ at 6.3 σ)

κ_{λ} parametrisation in single Higgs

• κ_{λ} contributes to NLO EW correction to Higgs production and decay

$$\mu_{if}(\kappa_{\lambda}) = \mu_{i}(\kappa_{\lambda}) \times \mu_{f}(\kappa_{\lambda}) \equiv \frac{\sigma_{i}(\kappa_{\lambda})}{\sigma_{\text{SM},i}} \times \frac{BR_{f}(\kappa_{\lambda})}{BR_{\text{SM},f}}$$

Production $\mu_{i}(\kappa_{\lambda}, \kappa_{i}) = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}} = Z_{H}^{\text{BSM}}(\kappa_{\lambda}) \left[\kappa_{i}^{2} + \frac{(\kappa_{\lambda} - 1)C_{1}^{i}}{K_{\text{EW}}^{i}} \right]$

$$\mu_f(\kappa_{\lambda}, \kappa_f) = \frac{\mathrm{BR}_f^{\mathrm{BSM}}}{\mathrm{BR}_f^{SM}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j \mathrm{BR}_j^{\mathrm{SM}} \left[\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j\right]}$$

- C_1^i and K_{EW}^i values are taken from LHCHWG-2022-02
- STXS 1.2 differential values applied to Hjj, V(let)H, ttH; inclusive values applied to ggH, tHj; no values available for tHW, bbH and ggZH
- Uncertainties on these values are not considered and are expected to be negligible
- Acc x eff assumed to be constant wrt κ_{λ} in each STXS bin
- κ_i is parametrized in terms of κ_V , κ_t , κ_b , $\kappa_ au$

Single H workspace parametrized as a function of κ_{λ} , κ_{V} , κ_{t} , κ_{b} , κ_{τ}

κ_{λ} parametrization in di-Higgs

Di-Higgs production diagrams

• Di-Higgs production is directly sensitive to κ_{λ} at LO in EW

$$\sigma_{ggF}(\kappa_t, \kappa_\lambda) \propto |\kappa_t^2 \mathcal{A}_1 + \kappa_t \kappa_\lambda \mathcal{A}_2|^2$$

• $|\mathcal{A}_1|^2$, $|\mathcal{A}_2|^2$, $|\mathcal{A}_1\mathcal{A}_2|$ determined by reweighting three ggF signal samples at reconstruction level

$$\sigma_{VBF}(\kappa_{\lambda}, \kappa_{V}, \kappa_{2V}) \propto \left| \kappa_{\lambda} \kappa_{V} \mathcal{A}_{1} + \kappa_{V}^{2} \mathcal{A}_{2} + \kappa_{2V} \mathcal{A}_{3} \right|^{2}$$

• $|\mathcal{A}_1|^2$, $|\mathcal{A}_2|^2$, $|\mathcal{A}_3|^2$, $|\mathcal{A}_1\mathcal{A}_2|$, $|\mathcal{A}_2\mathcal{A}_3|$, $|\mathcal{A}_1\mathcal{A}_3|$ are determined by reweighting six VBF signal samples at reconstruction level

- Di-Higgs decay is parametrized the same way as for single H
- Single Higgs background is parametrized the same way as for single H

Double H workspace parametrized as a function of κ_{λ} , κ_{2V} , κ_{V} , κ_{t} , κ_{b} , κ_{τ}

Single Higgs parametrization with STXS

