The beam test results of the USTC-IME LGADs at different irradiation fluence at DESY and CERN PS/SPS beam for ATLAS HGTD upgrade

Mário José Sousa, on behalf of USTC HGTD Group

University of Science and Technology of China

The 8th China LHC Physics Workshop November 23-27th, 2022

Outline

- Introduction to the test beam at DESY and SPS.
- Introduction to the analysis
- Results for test beam with USTC sensors
- Summary

SPS vs DESY

- \bullet The SPS@CERN accelerates protons received by the PS ($\sim 26\,GeV$) to 450 GeV.
 - ▶ SPS in turn feeds the LHC, will take protons to about 13.6 TeV (for Run 3).
- SPS give a pulse of protons, followed by a interval with no beam.
 - ▶ These protons hit a target and produce pions (120 GeV) that are used in the test beam.
- DESY is a synchrotron: electrons are accelerated in the DESY ring and will emit photons via bremsstrahlung interaction.
 - ▶ These photon give origin to a electron-positron pair.
 - ▶ Using a magnet and collimators, we obtain a clean continuous electron (6 GeV) beam.

Implementation of a BUSY signal

- In order to save the information from the telescope, we need to stop data taking by introducing a busy signal.
 - ► This is not necessary at SPS, since the beam is not continuous.

Trigger

- Normally, one just uses a couple of scintillators in each side of the telescope to trigger on a electron passing in every MIMOSA plane.
- On the far side, a FEI4 trigger board is used for fast triggering, instead.
- A Trigger Logical Unit (TLU) uses the coincidence of four channels:
 - 0 Busy signal
 - 1 FEI4
 - 2 Scintillator 1
 - 3 Scintillator 2
- Trigger logic: !0 & 1 & 2 & 3

Experimental setup 1/6: Beam

Experimental setup 2/6: Telescope

Experimental setup 3/6: FEI4 trigger

Experimental setup 4/6: Silicon photomultiplier

Experimental setup 5/6: Device under test (DUT)

Experimental setup 6/6: Cooling chamber

Final setup with cooling

- Cooling made with dry ice
 - ▶ only at DESY.
- Monitor temperature from Control Room:
 - ▶ Refill dry-ice if $T > -25^{\circ}C$.
- Monitor also humidity:
 - ► Toggle usage of dry air.

Device under test from USTC

- 4 DUT single pads tested in DESY:
 - ▶ W17 unirradiated
 - ▶ W17 irradiated at 1.5×10^{15} and 2.5×10^{15} 1 MeV n equivalent.
 - ▶ W19 at 2.5×10^{15} 1 MeV n equivalent.
- 4 2x2 pads unirradiated: W17 and W19 with inter-pad (IP) gap of 3 and 7.

Analysis introduction

Osciloscope pulse analysis

- Figure adapted from TB paper.
 - arXiv:1804.00622v3
 - See original: figure 7(b)

TOT Time over threshold.

TOA Time of arrival.

Amplitude Maximum of the pulse.

width Full width half height.

CFDxx Constant fraction discriminator above xx%.

timeAtMax Time at maximum of pulse.

Pedestal Average of voltage before pulse (\sim 6ns).

Noise Standard deviation of voltage before pulse.

X/Ytr Intersection of reconstructed track with DUT.

Test beam analysis

- timeAtMax (DUT-reference) within 1 ns from maximum of distribution.
- Using MIMOSA planes reconstruct a track passing through the DUT at (Xtr,Ytr).
- Take events in the centre of the DUT and measure the charge.
- Most probable value from a Landau fit.
- Efficiency measured as how many events have more than 4 fC.

@ 10th Beam Telescopes and Test Beams Workshop

- * calculated with constant fraction discriminator using DUTs vs reference.
 - \blacktriangleright Value given from σ of Gaussian fit to difference distribution.

Meeting HGTD specifications!

A look ahead to on-going analysis

- 2x2 USTC sensor with two pads connected to amplifier and two connected to ground.
- Projection in X-axis fitted with two error functions.
 - error function: $f(x) = a + \frac{b}{2} \times erf\{\frac{\sqrt{2}(x-c)}{d}\}$
- Inter-pad gap determined from the distance between the 50% of the convolved functions.

Summary and outlook

- Several HGTD sensors measured at test beam in DESY and PS/SPS in 6 sessions during this year.
 - ► Including 8 sensors produced in USTC.
- Results from DESY presented at 10th Beam Telescopes and Test Beams workshop.
 - ▶ USTC-W17 meets already HGTD specifications.
- On-going analysis probing already the inter-pad region for USTC sensors.
- More to come from this year test beams: testing the new ALTIROC 2.0
 - ► Stay tuned...