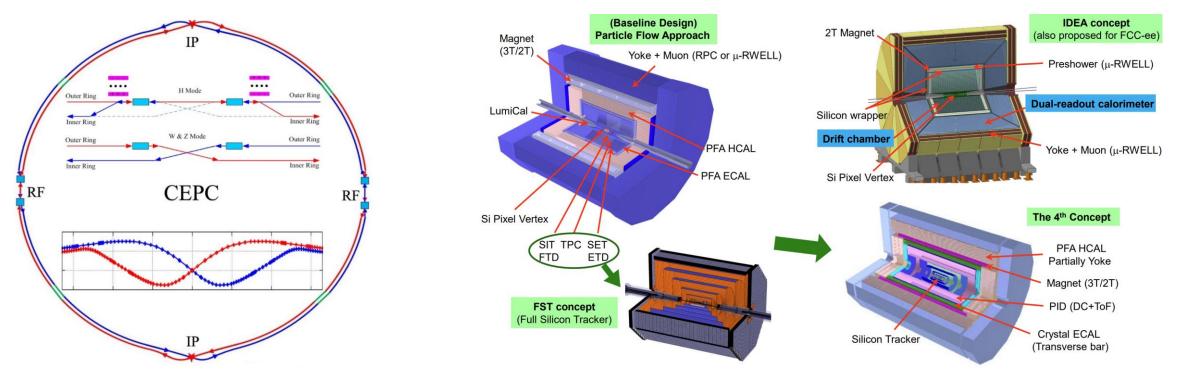
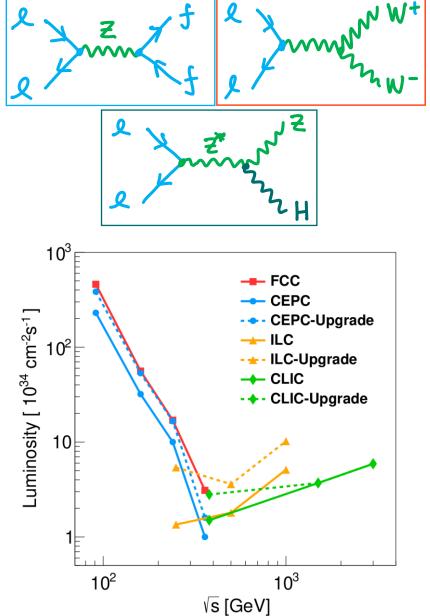
EWK measurements in CEPC

Bo Liu & Zhijun Liang IHEP, CAS



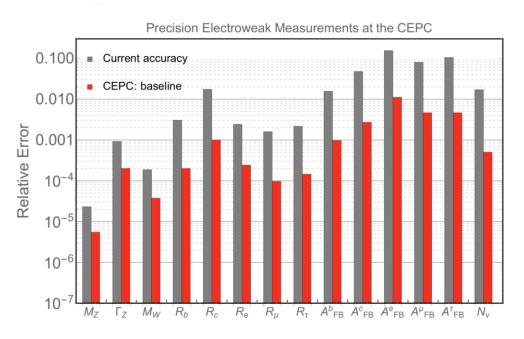


- CEPC is designed as the double ring accelator with length ~100km
- To run with collision energy at 240 GeV, above the ZH production threshold for ~1M Higgs; at the Z pole for ~Tera Z, at the W+W⁻ pair, and possible ttbar pair production threshold.
- Four conceptual designes of detectors

CEPC The CEPC program

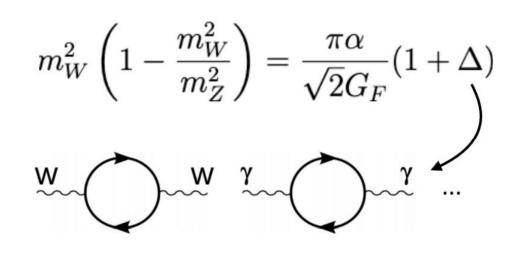
CEPC Operation mode		ZH	Z	W+W-	ttbar
\sqrt{s} [GeV]		~ 240	~ 91.2	~ 160	~ 360
Run time [years]		7	2	1	-
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
CDR (30MW)	$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
()	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
R	un time [years]	10	2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
Latest (50MW)	$\int L dt$ [ab ⁻¹ , 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

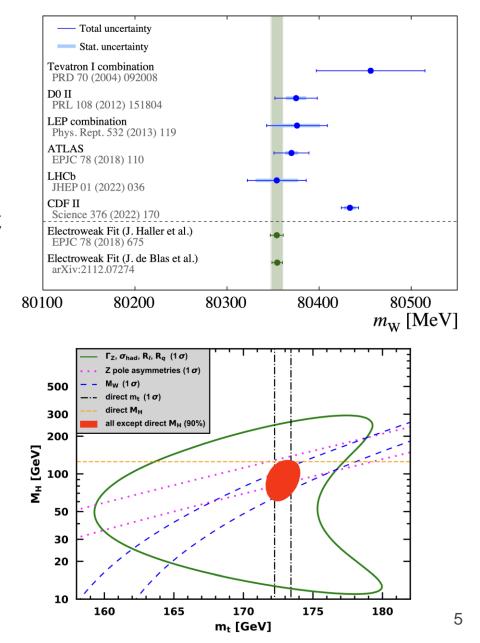
- Updated design with increased luminosity compared to CDR proposal.
 - Comparable with FCC
- New proposed ttbar threshold run


Potential of electroweak measurement in CEPC

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	$0.1 { m MeV} (0.005 { m MeV})$	Z threshold	E_{beam}
$\Delta\Gamma_Z$	2.3 MeV [37-41]	$0.025 { m ~MeV} (0.005 { m ~MeV})$	Z threshold	E_{beam}
Δm_W	$9 { m MeV} [42-46]$	$0.5 { m MeV} (0.35 { m MeV})$	WW threshold	E_{beam}
$\Delta\Gamma_W$	$49 { m MeV} [46-49]$	$2.0 { m MeV} (1.8 { m MeV})$	WW threshold	E_{beam}
Δm_t	$0.76 { m GeV}$ [50]	$\mathcal{O}(10) \mathrm{MeV}^{lpha}$	tt threshold	
ΔA_e	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	$0.015 \ [37, \ 53]$	$3.5 \times 10^{-5} \ (3.0 \times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.
ΔA_{τ}	4.3×10^{-3} [37, 51–55]	$7.0 \times 10^{-5} \ (1.2 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	$0.02 \ \ [37, \ 56]$	$20 \times 10^{-5} \ (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	$0.027 \ \ [37, \ 56]$	$30 \times 10^{-5} \ (6 \times 10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37-41]	$2 {\rm \ pb} (0.05 {\rm \ pb})$	Z pole	lumiosity
δR_b^0	$0.003 \ [37, 57-61]$	$0.0002~(5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001~(2 \times 10^{-5})$	Z pole	gluon splitting
δR_e^0	$0.0012 \ [37-41]$	$2 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam} and t channel
δR^0_μ	$0.002 \ [37-41]$	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	$0.017 \ [37-41]$	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
δN_{ν}	$0.0025 \ [37, \ 66]$	$2 \times 10^{-4} (3 \times 10^{-5})$	$ZH \operatorname{run} (\nu \nu \gamma)$	Calo energy scale

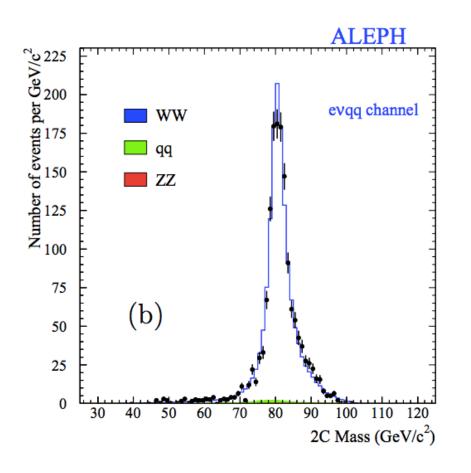
Great opportunity to test the consistency of SM EWK sector.

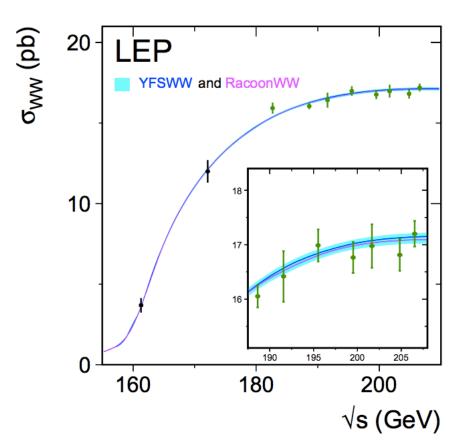

CEPC snowmass white paper: arXiv:2205.08553



Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139$ (31)	1×10 ⁻¹⁰	$e^{\pm}g_2$	
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	$\mu^{\pm}lifetime$	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP	
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10 ⁻⁴	LEP/Tevatron/LHC	
$sin^2 \theta_W = 0.23152 \pm 0.00014$	6×10-4	LEP/SLD	
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10-3	Tevatron/LHC	
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC	

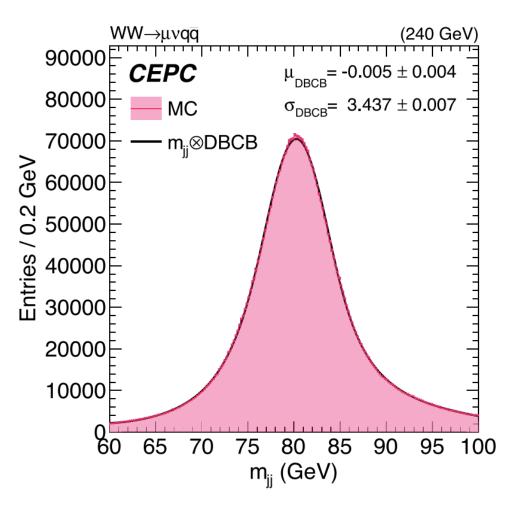
- Key gradient for electrweak sector
- Very important role to test the SM consistency
 - Predictable with given EWK parameters
- Observed 7σ deviation wrt SM predictions
- Difficult to reach to same level of precision at LHC
- Next generation ee collider is essential



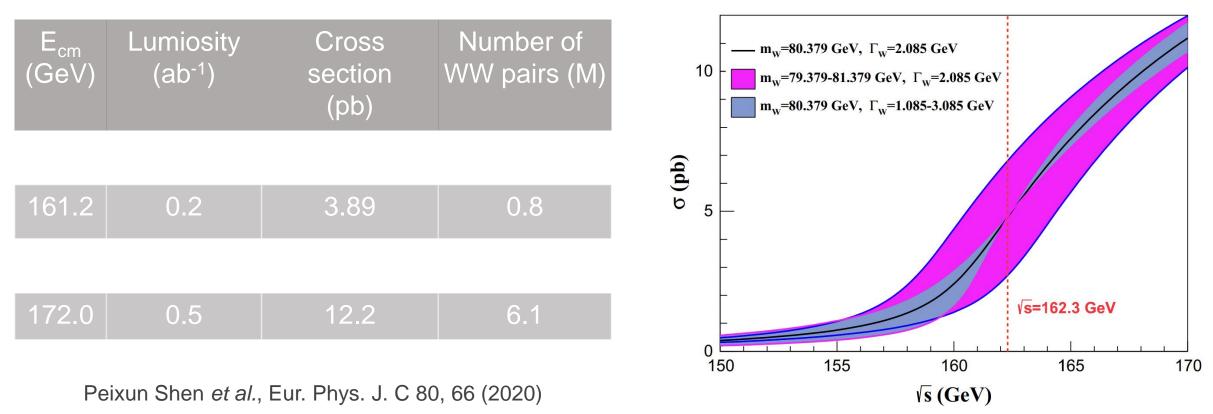


Two approaches for W boson mass measurement at lepton collider (from LEP)

Direct measurement Performed in ZH runs Precision 2~3 MeV


Indirect measurement Perform WW threshold scan runs (157~172 GeV) Precision at 1 MeV level

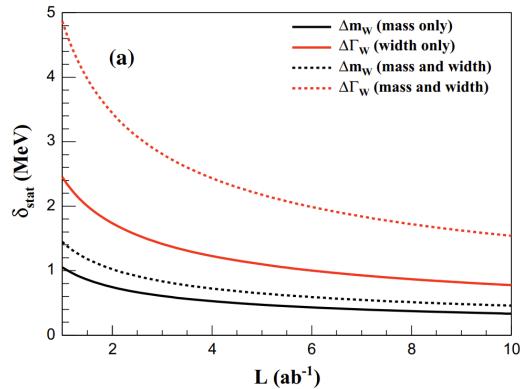
6


- Perform measurement in ZH run
- Expected 2-3 MeV uncertainty on W boson mass using two lvqq process at 240 GeV
- About <10 MeV achieved with only µvqq event from 5 ab⁻¹ from JINST 16 (2021) 07, P07037
- Further studies ongoing

Pei-Zhu Lai et al., JINST 16 (2021) 07, P07037

CEPC W boson mass measurement

- Joint effort of CEPC/FCC-ee to optimize WW threshold scan data taking strategy
- Assuming 1 year data taking with 2.6 ab⁻¹ luminosity (update design propose x2)
- Four points proposed
 - 157.5 GeV, 161.5 GeV and 162.5 GeV (W mass, W width measurement)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br(W \rightarrow had), CKM |V_{CS}|)

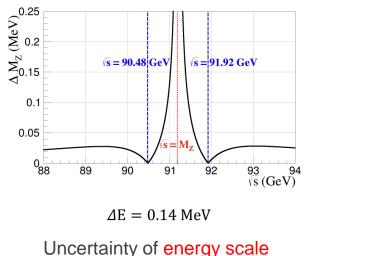

CEPC W boson mass measurement

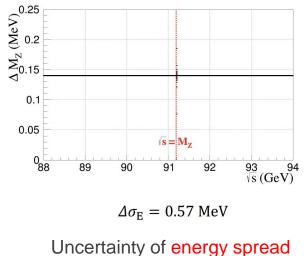
- Joint effort of CEPC/FCC-ee to optimize WW threshold scan data taking strategy
- Assuming 1 year data taking with 2.6 ab⁻¹ luminosity (updated design propose x2)
- Expected to reach 1 MeV precision for mW
- Could be further improved with updated calibration method for beam energy
 - With inverse-compton scattering for beam energy calibration, could further reduce systematic uncertainty Meiyu Si *et al.*, Nucl. Instrum. Meth. A 1026 (2022) 166216,

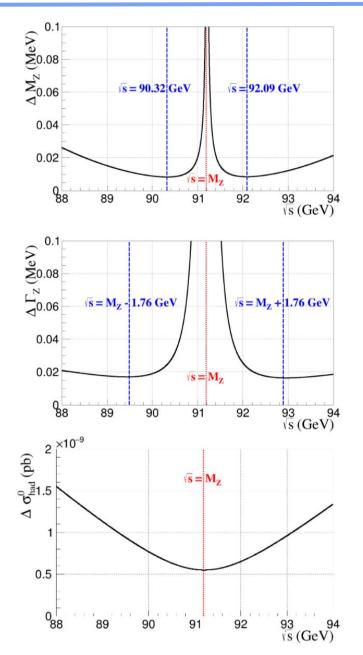
Guangyi Tang et al., Rev. Sci. Instrum. 91 no. 3, (2020) 033109

Observable	m_W	Γ_W
Source	Uncertain	nty (MeV)
Statistics	0.8	2.7
Beam energy	0.4	0.6
Beam spread	_	0.9
Corr. syst.	0.4	0.2
Total	1.0	2.8

Peixun Shen *et al.*, Eur. Phys. J. C 80, 66 (2020)

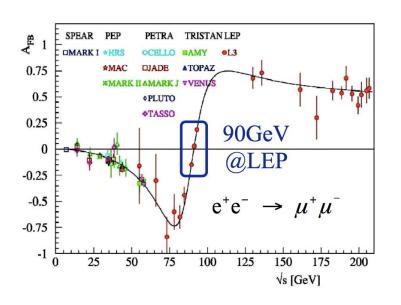


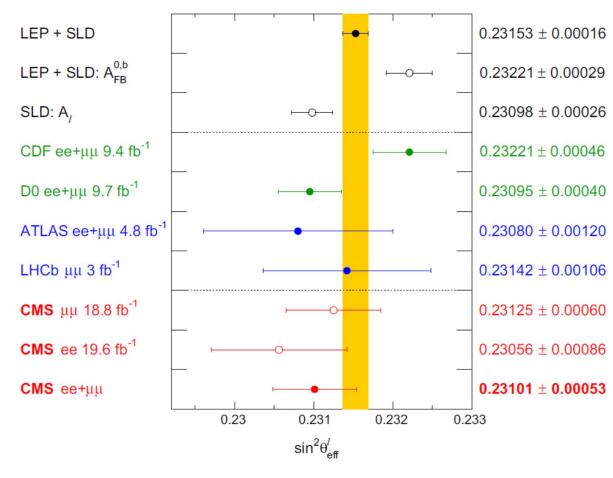

9


CEPC Z boson mass and width measurement

- Tera-Z could help improve m_z precion by one order of magnitude
- Systematic uncertainty dominant
- Improved energy calibration would further reduce uncertainties

Parameter	$\delta_{ m stat}$	$\delta_{ m total}$
$M_{\rm Z}$ (KeV)	7	66
$\Gamma_{\rm Z}$ (KeV)	13	126
$\sigma_{ m had}^0~(m pb)$	0.09	1.73




- Key parameter in electroweak sector
 - $\sim 3\sigma$ tension between LEP and SLC measurements
 - Experimental syst. much larger than theory syst.

	Sin²θ _w
LEP	0.23221 ± 0.00029
SLC	0.23098 ± 0.00026
Theory	0.23121 ± 0.00004

 Extract from A_{FB} measurement

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

CEPC Weak mixing angle sin²0_w

- Stat. Unc. dominated in LEP and Tevatron measurements
- Syst. Unc. (PDF) will become dominated systematics for LHC measurements
- CEPC has potential to improve $\sin^2\theta_W$ by two order of magnitudes
- Theory unc. is about 4×10⁻⁵ level with two loop calculation

Experiment	Stat. (10⁻⁵)	Syst. (10⁻⁵)	Theory unc. (PDF+QCD) (10⁻⁵)	Total unc. (10⁻⁵) δsin²θ _w
LEP	29	~ 1	~0	29
Tevatron	27	5	18	33
LHC 8TeV	36	18	35	53
LHC 13TeV By Projection	~15	> 20	> 25	~ 20
CEPC By LEP Projection	~0.2	~0.2	4 (Today)	~0.3

- At LEP measurement 0.21594 ±0.00066
- CEPC aim to improve the precision by a factor 10~20 (0.02%)
- R^b measurement is sensitive to New physics models (SUSY)
 - SUSY predicts corrections to $Z \rightarrow$ bb vertex
 - Through gluino and chargino loop ...

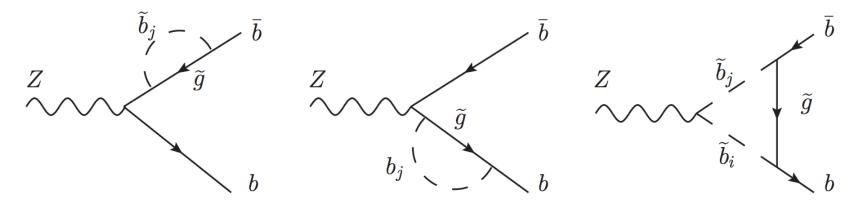
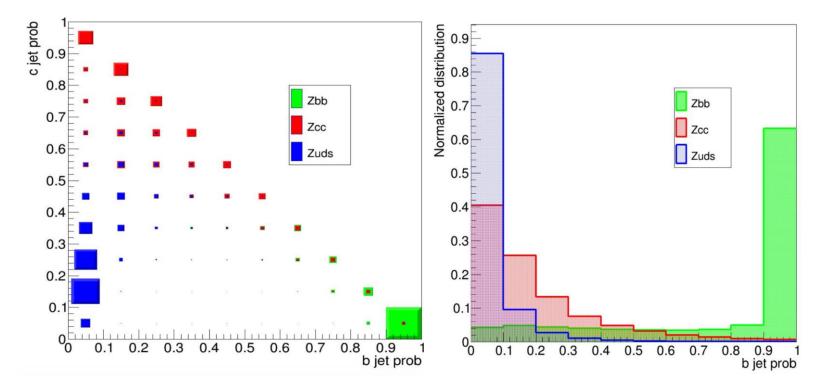
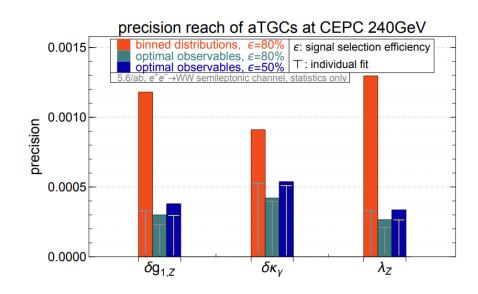



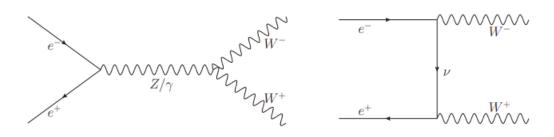
FIG. 1: One-loop Feynman diagrams of gluino correction to $Z \rightarrow \overline{b}b$

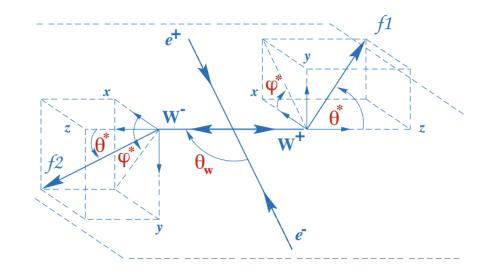
Wei Su and Jin Min Yang, Phys.Lett.B 757 (2016), 136-141

- Expected to be 20~50 times better than LEP measurements
 - With 95% purity working points, efficiency > 70% in CEPC (~30% for LEP)
 - 1D and 2D template fit for b tagging probability
- A global analysis method is developed to reduce impact from correlations between jet pairs. Method is under validation

Error source	ΔR ^b (10 ⁻⁵)
Statistics	1
Tracking resolution	1
Charm modeling	3
Gluon spliting	1
Hemisphere correlation	6
Total	7

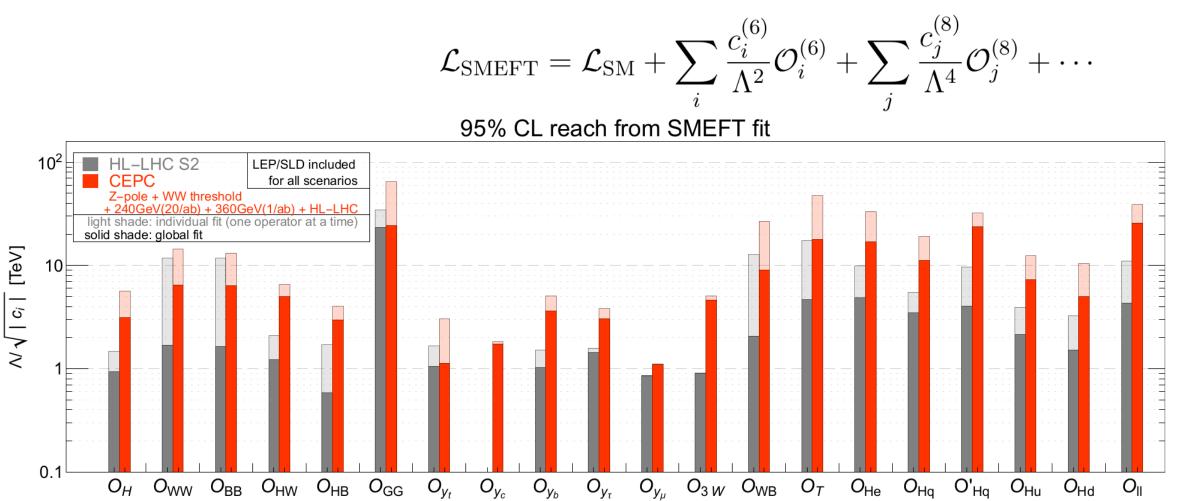

Bo Li et al., Eur. Phys. J. Plus 136, 1 (2021)


CEPC Search for aTGCs with $ee \rightarrow WW$

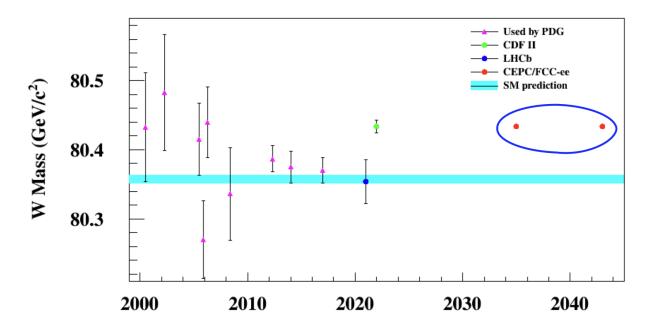

- Measurement of ee→WW process provides important constraints on various new physics contributions
- 7 parameters considered for further EFT studies

$$\begin{array}{ll} \delta g_{1,Z} \,, & \delta \kappa_{\gamma} \,, & \lambda_{Z} \,, \\ \end{array} \\ \delta g_{Z,L}^{ee} \,, & \delta g_{Z,R}^{ee} \,, & \delta g_{W}^{e\nu} \,, & \delta_{m_{W}} \\ \end{array} \\ \begin{array}{ll} \text{aTGC couplings} & \text{gauge couplings modifier} \end{array}$$

 The optimal observable method explore for this search (Markus Diehl and Otto Nachtmann, Z. Phys. C 62 (1994) 397–412)

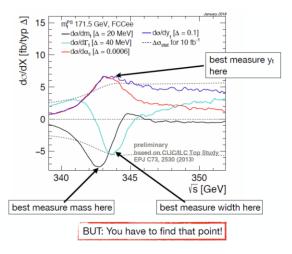


Jorge de Blas *et al.*, JHEP 12 (2019), 117


 Combined measurement from EWK and Higgs properties to constrain higher dimension operators in SMEFT

arXiv:2205.08553

- CEPC is designed to have 100km double ring accelerator
 - Multiple collision energy (from Z pole to ttbar threshold) proposed for various physics motivations
- Unprecedented luminosity provides chance to test the SM EWK sector in a more precise way
 - Expected 1-2 order of magnitude better than current precision
 - Would help to solve puzzles in current measurements


Backup

Motivation

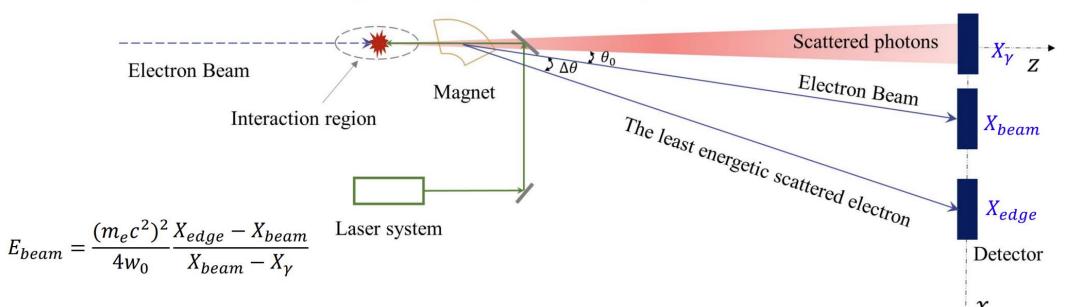
- ttbar threshold scan is made against \sqrt{s} and cross section, which is direct observable.
- It brings measurements of such parameters:
 - Top mass
 - Top width
 - Top Yukawa coupling
 - $\alpha_{\rm s}$ (strong coupling)

Expected precision

• With the CEPC setup, limited to the total luminosity of 100 fb⁻¹, top quark mass, width and α_s are measured individually at their optimal energy points.

Parameter of interest	Statistical uncertainty
m_t	9.06 MeV
Γ_t	25.86 MeV
α_s	0.000394

CLIC results:


02101000	OEIO I OOUILO.			
POI	Stat. uncertainty			
m_t	34 MeV			
Γ_t				
α_s	0.0009			

Eur. Phys. J. C (2013) 73:2530

Laser-Compton Method of calibration of beam energy

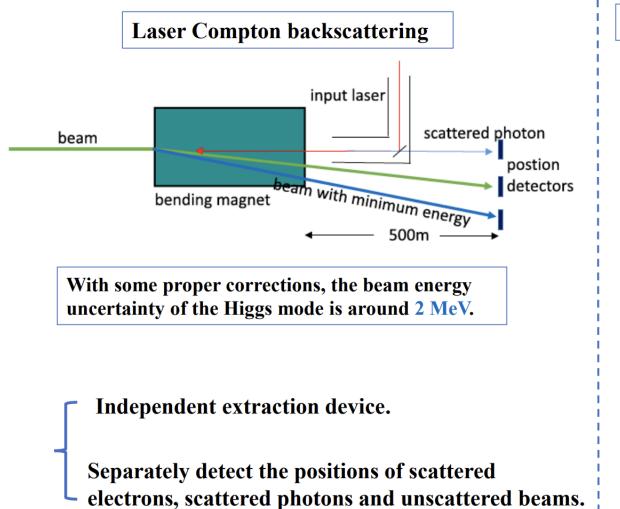
Method: Compton back-scattering combining a bending magnet

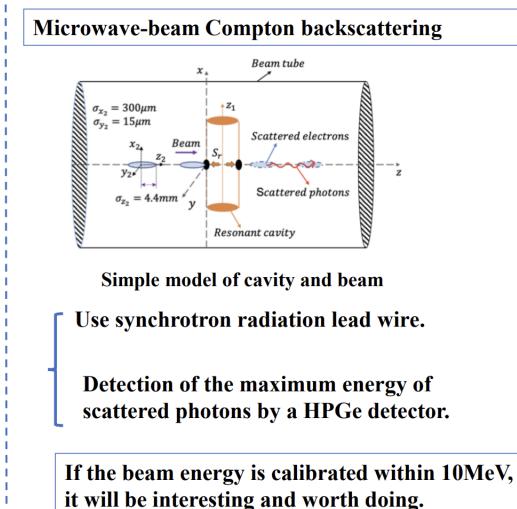
Electron beam		Nd:YAG Laser system	
Energy (GeV)	120	λ(nm)	532
N _e	15×10 ¹⁰	Energy(J)	0.1
Collision angle α		~ 2.35 mrad	-
Compton scattering cross section		202 mb	

• Compton back-scattering method used in BEPC by measuring the energy of scattered photons with accuracy is 2×10^{-5} .

https://doi.org/10.1016/j.nima.2011.08.050

 The technique is "non-destructive": ~10⁶ Compton scattered particles in one collision.




Comparison of the key parameters for different models in CEPC

	Higgs mode	Z mode	WW scan	$t\bar{t}$ scan
E_{beam}/GeV	120	45	80	175
X_{edge}/m	6.16352	9.29686	7.10343	5.57276
X_{beam}/m	1.87935	5.00178	2.81903	1.28868
$\delta X_{edge}/m$		2.6×	10^{-5}	
$\delta X_{beam}/m$		6×	10^{-8}	
$\delta E_{beam}/MeV$	1.0	0.3	0.6	1.8

• The statistical uncertainties of beam energy are not included here

Rev. Sci. Instrum. 91 no. 3, (2020) 033109, Nucl. Instrum. Meth. A 1026 (2022) 166216