Observation of doubly-charged tetraquark candidate at LHCb (CLHCP 2022)

Shuangli Yang

University of Chinese Academy of Sciences, Beijing, China

On behalf of the LHCb Collaboration

Nov. 25th, 2022

- The existence of mesonic exotic state has been discussed since 1964¹.
- In 2003, Belle Collaboration reported the first observation of $\chi_{c1}(3872)$.
- ➤ Many mesonic exotic states are observed in the past two decades.
- ➤ A series of **theoretical models** are established to describe these states.

¹ M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 (1964) 214.

Masses and discovery date for states observed at LHCb. Hollow markers indicate superseded states.^{2, 3}

• 60 new hadrons observed at LHCb!

- > 15 tetraquark candidates.
- > 5 pentaquark candidates.[4]

² https://www.nikhef.nl/~pkoppenb/particles.html

Exotic hadron naming convention: https://arxiv.org/abs/2206.15233

⁴ $P_c(4450)^+$ resolved into $P_c(4440)^+$ and $P_c(4457)^+$.

• $T^a_{cs0}(2900)^{++}$: $[c\overline{s}u\overline{d}]$; $T^a_{cs0}(2900)^0$: $[c\overline{s}\overline{u}d]$

- Why $D_s^+\pi^{\pm}$ states?
 - The $D_{s0}^*(2317)^+ (D_s^+\pi^0)$ state was observed in 2003.
 - It is thought to have some **tetraquark component** in several theoretical descriptions, whose I = 1 partners can exist in the $D_s^+ \pi^{\pm}$ final states.
 - **Prof. Hai-Yang:** It would be astonishing if a doubly charged resonance is found.

- Not been confirmed by the other experiments.
- Natural to search for $D_s^+\pi^\pm$ resonances as predicted in the diquarkantidiquark model.

Fig. 2. Diagrams for (a) $B \to \bar{D}\tilde{D}_{0s}^+$, (b) $B^+ \to D^-\tilde{D}_{1s}^{++}$ $(B \to \bar{D}\tilde{D}_{1s})$, (c) $\bar{B} \to \pi^-\tilde{D}_{s\bar{s}}$, $\pi^-\tilde{D}$, (d) $B \to D\bar{D}_{\bar{s}}^0$.

PLB 566 (2003) 193-200

Introduction

• Why $D_s^+\pi^{\pm}$ states?

- In 2020, the $X_0(2900)^0$ and $X_1(2900)^0$ ($cs\bar{u}\bar{d}$), have been observed at LHCb in D^+K^- final states.
- They are candidates to be the first observed tetraquarks consisting of four different flavors.

PRL 125, 242001 (2020) PRD 102, 112003 (2020)

- \triangleright Would there be exotic states decaying into $D_s^+\pi^-$ ($c\bar{s}\bar{u}d$) or $D_s^+\pi^+$ ($c\bar{s}u\bar{d}$) final states?
- Amplitude analyses of $B^0 o \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ o D^- D_s^+ \pi^+$ decays.
 - \triangleright Only excited \overline{D}^* states with natural spin-parity expected to contribute.
 - \triangleright Ideal channels to search for **possible exotic states** decaying to $D_s^+\pi^\pm$ final states.
 - Can be explored by LHCb datasets with large statistic!

LHCb-PAPER-2022-026 LHCb-PAPER-2022-027

$$lack B^0
ightarrow \overline D^0 D_S^+ \pi^- \& B^+
ightarrow D^- D_S^+ \pi^+$$

◆ Using all the Run 1 and Run 2 datasets.

- $\Phi \, \overline{D}{}^{\,0} \to K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{-}\pi^{+}$
- $\Phi D^- \to K^+\pi^-\pi^-$
- $lack D_s^+ \to K^+K^-\pi^+$

- ✓ In B signal region:
 - ✓ 4009 $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ signals, purity 90.7%.
 - \checkmark 3750 B⁺ → D⁻D_s⁺π⁺ signals, purity 95.2%.

LHCb-PAPER-2022-026 LHCb-PAPER-2022-027

- \checkmark Clear spin-2 vertical band at the $\overline{D}\pi$ mass squared around 6 GeV².
- \checkmark A faint horizontal band at the $D_s\pi$ mass squared around 8.5 GeV².
- Very similar features in the Dalitz plots of two channels, which are isospin-related.
- It suggests the feasibility to perform **simultaneous fit** of the two channels.
 - The amplitude parameters of all components are set to be the same of the two channels.

LHCb-PAPER-2022-02 LHCb-PAPER-2022-02

Unbinned maximum likelihood fits performed with TF-PWA

$$P(x;\Theta) = f_{\text{sig}} \cdot P_{\text{sig}}^{\text{norm}}(x;\Theta) + f_{\text{bkg}} \cdot P_{\text{bkg}}^{\text{norm}}(x),$$

Fractions determined from mass fits

Background modelled from upper sideband with extrapolating into signal regions

• Signal PDF:
$$P_{\mathrm{sig}}^{\mathrm{norm}}(x;\Theta) = \frac{\underline{\epsilon(x)|\mathcal{A}(x;\Theta)|^2}}{\underline{I_{\mathrm{sig}}(\Theta)}}.$$
Normalization factor

- Efficiencies obtained from full simulation with corrections for data-simulation difference
- Amplitude model: $A(x;\Theta) = \sum c_i \cdot A_i(x;\Theta_i)$,

Angular distribution + line shape (RBW etc.)

• The $\overline{D}\pi$ candidates with natural spin-parity on PDG:

LHCb-PAPER-2022-026
LHCb-PAPER-2022-027

Resonance	J^P	Mass (GeV)	Width (GeV)	Comments
$\overline{D}^*(2007)^0$	1-	2.00685 ± 0.00005	$< 2.1 \times 10^{-3}$	Width set to be 0.1 MeV
$D^*(2010)^-$	1-	2.01026 ± 0.00005	$8.34 \pm 0.18 \times 10^{-5}$	
$\overline{D}_{0}^{*}(2300)$	0+	2.343 ± 0.010	0.229 ± 0.016	#
$\overline{D}_{2}^{*}(2460)$	2^+	2.4611 ± 0.0007	0.0473 ± 0.0008	#
$\overline{D}_{1}^{*}(2600)^{0}$	1-	2.627 ± 0.010	0.141 ± 0.023	#
$\overline{D}_{3}^{*}(2750)$	3-	2.7631 ± 0.0032	0.066 ± 0.005	#
$\overline{D}_{1}^{*}(2760)^{0}$	1-	2.781 ± 0.022	0.177 ± 0.040	#
$D_J^*(3000)^0$??	3.214 ± 0.060	0.186 ± 0.080	$\# J^P = 4^+ \text{ is assumed}$

♦ Fit strategy – **simultaneous** fit

- \triangleright Include all the D^* and D^{**} states with natural spin-parity.
- $\triangleright \overline{D}\pi$ S-wave component: quasi-model-independent description (QMI) spline points.*
- \triangleright All parameters, except $\overline{D}^*(2007)^0$ and $D^*(2010)^-$ are shared.

LHCb-PAPER-2022-026 LHCb-PAPER-2022-027

✓ Fit result

- $\checkmark M(\overline{D}\pi)$ and $M(\overline{D}D_S^+)$ well described.
- \checkmark $D_1^*(2600), D_1^*(2760), D(3000)$ not significant, however, still included conservatively.
- ✓ Spin-parity of D(3000) favors 4^+ .
- ✓ Further new \overline{D}^{**} state with spin-parity up to 4⁺ tested to be disfavored.

Peaking structures not well described near $M(D_s^+\pi) = 2.9$ GeV!

LHCb-PAPER-2022-020 LHCb-PAPER-2022-020

lack Two $D_s^+\pi$ exotic states with shared parameters are added.

- ✓ J^P up to 3⁺ are tested, 0^+ produces the best likelihood.
- ✓ Significance greater that 9σ .

$$M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$$

✓ Mass and width are measured:

$$\Gamma = 0.136 \pm 0.023 \pm 0.013 \,\text{GeV}$$

✓ Named* as $T_{c\bar{s}0}^a(2900)^0$ $(D_S^+\pi^-)$ and $T_{c\bar{s}0}^a(2900)^{++}$ $(D_S^+\pi^+)$

^{*} Exotic hadron naming convention: https://arxiv.org/abs/2206.15233

LHCb-PAPER-2022-02

♦Spin test

- ✓ Generate pseudoexperiments.
- ✓ Spin-parity favored 0^+ over 1^- with a significance about 7.5 σ .
- ✓ 0⁺ is also significantly preferred when exotics not constrained by isospin.

LHCb-PAPER-2022-02 LHCb-PAPER-2022-02

♦Argand diagram

- ✓ Replace the RBW of $T_{c\bar{s}0}^a$ with spline points.
- ✓ The 7 points from $m \frac{3}{2}\Gamma$ to $m + \frac{3}{2}\Gamma$, where m and Γ is the fitted values of $T_{c\bar{s}0}^a$ mass and width.
- ✓ Lineshape consistent with RBW.

Separate $T_{c\bar{s}0}^{a}(2900)^{0}$ and $T_{c\bar{s}0}^{a}(2900)^{++}$

LHCb-PAPER-2022-026 LHCb-PAPER-2022-027

• Separate $T_{c\bar{s}0}^a$ parameters

- ✓ $-\ln \mathcal{L}$ improved by **2.8**, with **4** free parameters added.
- ✓ Masses and widths are **consistent** with each other.
- ✓ Isospin triplet!

	Mass (GeV)	Width (GeV)	Significance
$T^a_{c\bar{s}0}(2900)^0$	$2.892 \pm 0.014 \pm 0.015$	$0.119 \pm 0.026 \pm 0.013$	8.0σ
$T^a_{c\bar{s}0}(2900)^{++}$	$2.921 \pm 0.017 \pm 0.020$	$0.137 \pm 0.032 \pm 0.017$	6.5σ

- First observation of a doubly charged mesonic exotic state, together with its neutral partner.
 - ✓ Belong to the same isospin triplet.
 - ✓ Spin-parity: 0^+ .
 - \checkmark Minimum quark content: $T^a_{c\bar{s}0}(2900)^{++}$: $[c\bar{s}u\bar{d}]$; $T^a_{c\bar{s}0}(2900)^0$: $[c\bar{s}\bar{u}d]$
 - ✓ Similar mass with $X_0(2900)$ ($cs\bar{u}\bar{d}$), but width and flavor contents are different.

Next step

- \triangleright Several ongoing $B \rightarrow DDh$ analyses with LHCb Run 1 and Run 2 datasets.
 - $\mathbf{B}: B^{0,+}, B_s^0, \Lambda_b^0 \dots; \mathbf{D}: D^{0,+}, D^{*+}, D_s^+, \Lambda_c^+ \dots; \mathbf{h}: K^+, \pi^+, p, \Lambda \dots$
- ➤ LHC Run 3 data taking started recently.
 - ✓ More statistic, detailed analysis on $B \to \overline{D}D_s\pi$
 - $\checkmark \ B \to \overline{D}D_S\pi^0, B \to \overline{D}D_S\pi\pi, B_S \to \overline{D}D_SK\pi \ \dots$

Thank you!

Back Up

16

The LHCb detector

Table 2: Signal and background yields inside the B mass signal window, together with the signal purity, split by run period and decay mode. The uncertainties shown are statistical.

Decay	Parameter	Run 1	Run 2
	Signal yield	564 ± 26	2534 ± 55
$B^0 o ar{D}_{K\pi}^0 D_s^+ \pi^-$	Total candidates	633	2753
	Purity	89.1%	92.1%
	Signal yields	177 ± 14	734 ± 31
$B^0 o \overline{D}_{K3\pi}^0 D_s^+ \pi^-$	Total candidates	199	835
	Purity	88.9%	87.9%
	Signal yield	766 ± 29	2984 ± 57
$B^+ o D^- D_s^+ \pi^+$	Total candidates	797	3143
	Purity	96.1%	94.9%

Amplitude formula

For decay $B \to D(1)D_s^+(2)\pi(3)$, the amplitude is

$$\mathcal{A} = \sum_a C_a \cdot f_a(m_{12}^2) \cdot T_a(\theta_{12}) + \ \sum_b C_b \cdot f_b(m_{23}^2) \cdot T_b(\theta_{23}) + \ \sum_c C_c \cdot f_c(m_{13}^2) \cdot T_c(\theta_{13}),$$

- C is complex coefficient
- $f(m^2)$ is lineshape function
- $T(\theta)$ is the angular term

> For resonance, we use the relativistic Breit-Wigner lineshape

$$f_{BW} = q(m)^{L_1} p(m)^{L_2} \frac{F_1(m, L_1) F_2(m, L_2)}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

with running width

$$\Gamma(m) = \Gamma_0 \left(rac{q(m)}{q_0}
ight)^{2L_2+1} rac{m_0}{m} F_2^2(m,L_2)$$

> The Blatt-Weisskopf form factors

$$F\left(m,L\right) = \begin{cases} 1 & L = 0\\ \sqrt{\frac{1+z^2(m)}{1+z_0^2}} & L = 1\\ \sqrt{\frac{9+3z^2(m)+z^4(m)}{9+3z_0^2+z_0^4}} & L = 2\\ \sqrt{\frac{225+45z^2(m)+6z^4(m)+z^6}{225+45z_0^2+6z_0^4+z_0^6}} & L = 3 \end{cases}$$

Maximum likelihood fit (cFit*)

- \triangleright PDF(x; Θ) = $|A(x; \Theta)|^2$, where x is the data point, Θ is the parameter set.
- $ightharpoonup -2 \ln L = -2 \sum_{i}^{N} \ln PDF(x; \Theta)$

*Detailed implementations in back-up slide

LHCb Preliminary

- $T_{c\bar{s}0}^a(2900) \& X_0(2900)$
 - Similar mass, but width and flavor contents are different.
 - $T_{c\bar{s}1}^a(2900)$?
 - $T_{C\bar{s}0}^a(2900)^{++} \to D^+K^+?$
 - $T_{c\bar{s}0}^a(2900)^+ \to D_s^+\pi^0, D_s^+\pi^+\pi^-?$

More statistic needed!

	Mass (GeV)	Width (GeV)
$T^a_{c\bar{s}0}(2900)$	$2.908 \pm 0.011 \pm 0.020$	$0.136 \pm 0.023 \pm 0.020$
$X_0(2900)$	$2.866 \pm 0.007 \pm 0.002$	$0.057 \pm 0.012 \pm 0.004$
$X_1(2900)$	$2.904 \pm 0.005 \pm 0.001$	$0.110 \pm 0.011 \pm 0.004$

 $X_0(2900), X_1(2900)[cs\overline{u}\overline{d}]$

 $m(D^{-}K^{+})$ [GeV/ c^{2}]

LHCb (b)

PRD 102, 112003 (2020)

 χ_{aa} (3930) \rightarrow D^+ $D^ \psi$ (4040) \rightarrow D^{+} D^{-} ψ (4160) \rightarrow D^+ $D^ \psi$ (4415) \rightarrow D^+ $D^ X_0(2900) \to D^-K^+$ $X_{1}(2900) \rightarrow D^{-}K^{+}$ **Nonresonant**